refactor: fix markup - ensure all cells have t defined

This commit is contained in:
max 2022-08-21 17:45:08 +03:00
parent e427050369
commit 2877f44216
5 changed files with 182 additions and 80 deletions

View file

@ -147,9 +147,18 @@ export function markupPackFeatures(
// markup pack land cells
const dfLandMarked = markup({distanceField, neighbors: cells.c, start: LANDLOCKED + 1, increment: 1});
// markup deep ocean cells
const dfOceanMarked = markup({
distanceField: dfLandMarked,
neighbors: cells.c,
start: DEEPER_WATER,
increment: -1,
limit: -10
});
TIME && console.timeEnd("markupPackFeatures");
return {features, featureIds, distanceField: dfLandMarked, haven, harbor};
return {features, featureIds, distanceField: dfOceanMarked, haven, harbor};
}
function addFeature({
@ -291,7 +300,7 @@ function markup({
increment: number;
limit?: number;
}) {
for (let distance = start, marked = Infinity; marked > 0 && distance > limit; distance += increment) {
for (let distance = start, marked = Infinity; marked > 0 && distance !== limit; distance += increment) {
marked = 0;
const prevDistance = distance - increment;
for (let cellId = 0; cellId < neighbors.length; cellId++) {

View file

@ -4,34 +4,51 @@ import FlatQueue from "flatqueue";
import {TIME} from "config/logging";
import {ELEVATION, MIN_LAND_HEIGHT, ROUTES} from "config/generation";
import {dist2} from "utils/functionUtils";
import {drawLine} from "utils/debugUtils";
export function generateRoutes(
burgs: TBurgs,
cells: Pick<IPack["cells"], "c" | "p" | "h" | "biome" | "state" | "burg">
) {
type TCellsData = Pick<IPack["cells"], "c" | "p" | "g" | "h" | "t" | "haven" | "biome" | "state" | "burg">;
export function generateRoutes(burgs: TBurgs, temp: Int8Array, cells: TCellsData) {
const cellRoutes = new Uint8Array(cells.h.length);
const validBurgs = burgs.filter(burg => burg.i && !(burg as IBurg).removed) as IBurg[];
const {capitalsByFeature, burgsByFeature, portsByFeature} = sortBurgsByFeature(burgs);
const connections: Map<string, boolean> = new Map();
const mainRoads = generateMainRoads();
const trails = generateTrails();
// const oceanRoutes = getSearoutes();
const seaRoutes = generateSeaRoutes();
const routes = combineRoutes();
console.log(routes);
return {cellRoutes, routes};
function sortBurgsByFeature(burgs: TBurgs) {
const burgsByFeature: Dict<IBurg[]> = {};
const capitalsByFeature: Dict<IBurg[]> = {};
const portsByFeature: Dict<IBurg[]> = {};
const isBurg = (burg: IBurg | TNoBurg): burg is IBurg => burg.i !== 0;
const addBurg = (object: Dict<IBurg[]>, feature: number, burg: IBurg) => {
if (!object[feature]) object[feature] = [];
object[feature].push(burg);
};
for (const burg of burgs) {
if (isBurg(burg)) {
const {feature, capital, port} = burg;
addBurg(burgsByFeature, feature, burg);
if (capital) addBurg(capitalsByFeature, feature, burg);
if (port) addBurg(portsByFeature, port, burg);
}
}
return {burgsByFeature, capitalsByFeature, portsByFeature};
}
function generateMainRoads() {
TIME && console.time("generateMainRoads");
const mainRoads: {feature: number; cells: number[]}[] = [];
const capitalsByFeature = validBurgs.reduce((acc, burg) => {
const {capital, feature} = burg;
if (!capital) return acc;
if (!acc[feature]) acc[feature] = [];
acc[feature].push(burg);
return acc;
}, {} as {[feature: string]: IBurg[]});
for (const [key, featureCapitals] of Object.entries(capitalsByFeature)) {
const points: TPoints = featureCapitals.map(burg => [burg.x, burg.y]);
const urquhartEdges = calculateUrquhartEdges(points);
@ -39,7 +56,7 @@ export function generateRoutes(
const start = featureCapitals[fromId].cell;
const exit = featureCapitals[toId].cell;
const segments = findLandPathSegments(cellRoutes, connections, start, exit);
const segments = findPathSegments({isWater: false, cellRoutes, connections, start, exit});
for (const segment of segments) {
addConnections(segment, ROUTES.MAIN_ROAD);
mainRoads.push({feature: Number(key), cells: segment});
@ -56,13 +73,6 @@ export function generateRoutes(
const trails: {feature: number; cells: number[]}[] = [];
const burgsByFeature = validBurgs.reduce((acc, burg) => {
const {feature} = burg;
if (!acc[feature]) acc[feature] = [];
acc[feature].push(burg);
return acc;
}, {} as {[feature: string]: IBurg[]});
for (const [key, featureBurgs] of Object.entries(burgsByFeature)) {
const points: TPoints = featureBurgs.map(burg => [burg.x, burg.y]);
const urquhartEdges = calculateUrquhartEdges(points);
@ -70,7 +80,7 @@ export function generateRoutes(
const start = featureBurgs[fromId].cell;
const exit = featureBurgs[toId].cell;
const segments = findLandPathSegments(cellRoutes, connections, start, exit);
const segments = findPathSegments({isWater: false, cellRoutes, connections, start, exit});
for (const segment of segments) {
addConnections(segment, ROUTES.TRAIL);
trails.push({feature: Number(key), cells: segment});
@ -82,6 +92,30 @@ export function generateRoutes(
return trails;
}
function generateSeaRoutes() {
TIME && console.time("generateSearoutes");
const mainRoads: {feature: number; cells: number[]}[] = [];
for (const [key, featurePorts] of Object.entries(portsByFeature)) {
const points: TPoints = featurePorts.map(burg => [burg.x, burg.y]);
const urquhartEdges = calculateUrquhartEdges(points);
urquhartEdges.forEach(([fromId, toId]) => {
const start = featurePorts[fromId].cell;
const exit = featurePorts[toId].cell;
drawLine(cells.p[start], cells.p[exit]);
const segments = findPathSegments({isWater: true, cellRoutes, connections, start, exit});
for (const segment of segments) {
addConnections(segment, ROUTES.MAIN_ROAD);
mainRoads.push({feature: Number(key), cells: segment});
}
});
}
TIME && console.timeEnd("generateSearoutes");
return mainRoads;
}
function addConnections(segment: number[], roadTypeId: number) {
for (let i = 0; i < segment.length; i++) {
const cellId = segment[i];
@ -91,58 +125,25 @@ export function generateRoutes(
}
}
// find land route segments from cell to cell
function findLandPathSegments(
cellRoutes: Uint8Array,
connections: Map<string, boolean>,
start: number,
exit: number
): number[][] {
const from = findPath();
function findPathSegments({
isWater,
cellRoutes,
connections,
start,
exit
}: {
isWater: boolean;
cellRoutes: Uint8Array;
connections: Map<string, boolean>;
start: number;
exit: number;
}): number[][] {
const from = findPath(isWater, cellRoutes, temp, cells, start, exit);
if (!from) return [];
const pathCells = restorePath(start, exit, from);
const segments = getRouteSegments(pathCells, connections);
return segments;
function findPath() {
const from: number[] = [];
const cost: number[] = [];
const queue = new FlatQueue<number>();
queue.push(start, 0);
while (queue.length) {
const priority = queue.peekValue()!;
const next = queue.pop()!;
for (const neibCellId of cells.c[next]) {
if (cells.h[neibCellId] < MIN_LAND_HEIGHT) continue; // ignore water cells
const habitability = biomesData.habitability[cells.biome[neibCellId]];
if (!habitability) continue; // inhabitable cells are not passable (eg. lava, glacier)
const distanceCost = dist2(cells.p[next], cells.p[neibCellId]);
const habitabilityModifier = 1 + Math.max(100 - habitability, 0) / 1000; // [1, 1.1];
const heightModifier = 1 + Math.max(cells.h[neibCellId] - ELEVATION.HILLS, 0) / 500; // [1, 1.1];
const roadModifier = cellRoutes[neibCellId] ? 0.5 : 1;
const burgModifier = cells.burg[neibCellId] ? 0.5 : 1;
const cellsCost = distanceCost * habitabilityModifier * heightModifier * roadModifier * burgModifier;
const totalCost = priority + cellsCost;
if (from[neibCellId] || totalCost >= cost[neibCellId]) continue;
from[neibCellId] = next;
if (neibCellId === exit) return from;
cost[neibCellId] = totalCost;
queue.push(neibCellId, totalCost);
}
}
return null; // path is not found
}
}
function combineRoutes() {
@ -156,10 +157,99 @@ export function generateRoutes(
routes.push({i: routes.length, type: "trail", feature, cells});
}
for (const {feature, cells} of seaRoutes) {
routes.push({i: routes.length, type: "sea", feature, cells});
}
return routes;
}
}
function findPath(
isWater: boolean,
cellRoutes: Uint8Array,
temp: Int8Array,
cells: TCellsData,
start: number,
exit: number
) {
const from: number[] = [];
const cost: number[] = [];
const queue = new FlatQueue<number>();
queue.push(start, 0);
return isWater ? findWaterPath() : findLandPath();
function findLandPath() {
while (queue.length) {
const priority = queue.peekValue()!;
const next = queue.pop()!;
for (const neibCellId of cells.c[next]) {
if (cells.h[neibCellId] < MIN_LAND_HEIGHT) continue; // ignore water cells
const habitability = biomesData.habitability[cells.biome[neibCellId]];
if (!habitability) continue; // inhabitable cells are not passable (eg. lava, glacier)
const distanceCost = dist2(cells.p[next], cells.p[neibCellId]);
const habitabilityModifier = 1 + Math.max(100 - habitability, 0) / 1000; // [1, 1.1];
const heightModifier = 1 + Math.max(cells.h[neibCellId] - ELEVATION.HILLS, 0) / 500; // [1, 1.1];
const roadModifier = cellRoutes[neibCellId] ? 0.5 : 1;
const burgModifier = cells.burg[neibCellId] ? 0.5 : 1;
const cellsCost = distanceCost * habitabilityModifier * heightModifier * roadModifier * burgModifier;
const totalCost = priority + cellsCost;
if (from[neibCellId] || totalCost >= cost[neibCellId]) continue;
from[neibCellId] = next;
if (neibCellId === exit) return from;
cost[neibCellId] = totalCost;
queue.push(neibCellId, totalCost);
}
}
return null; // path is not found
}
function findWaterPath() {
const MIN_PASSABLE_TEMP = -4;
while (queue.length) {
const priority = queue.peekValue()!;
const next = queue.pop()!;
for (const neibCellId of cells.c[next]) {
if (neibCellId === exit) {
from[neibCellId] = next;
return from;
}
if (cells.h[neibCellId] >= MIN_LAND_HEIGHT) continue; // ignore land cells
if (temp[cells.g[neibCellId]] < MIN_PASSABLE_TEMP) continue; // ignore to cold cells
const distanceCost = dist2(cells.p[next], cells.p[neibCellId]);
const typeModifier = Math.abs(cells.t[neibCellId]); // 1 for coastline, 2 for deep ocean, 3 for deeper ocean
const routeModifier = cellRoutes[neibCellId] ? 0.5 : 1;
const cellsCost = distanceCost * typeModifier * routeModifier;
const totalCost = priority + cellsCost;
if (from[neibCellId] || totalCost >= cost[neibCellId]) continue;
from[neibCellId] = next;
cost[neibCellId] = totalCost;
queue.push(neibCellId, totalCost);
}
}
return null; // path is not found
}
}
function restorePath(start: number, end: number, from: number[]) {
const cells: number[] = [];
@ -181,8 +271,6 @@ function getRouteSegments(pathCells: number[], connections: Map<string, boolean>
const segments: number[][] = [];
let segment: number[] = [];
// if (pathCells.includes(5204)) debugger;
for (let i = 0; i < pathCells.length; i++) {
const cellId = pathCells[i];
const nextCellId = pathCells[i + 1];

View file

@ -117,10 +117,12 @@ export function createPack(grid: IGrid): IPack {
}
);
const {cellRoutes, routes} = generateRoutes(burgs, {
const {cellRoutes, routes} = generateRoutes(burgs, temp, {
c: cells.c,
p: cells.p,
g: cells.g,
h: heights,
t: distanceField,
biome,
state: stateIds,
burg: burgIds
@ -189,14 +191,17 @@ function repackGrid(grid: IGrid) {
for (const i of gridCells.i) {
const height = gridCells.h[i];
const type = gridCells.t[i];
if (height < MIN_LAND_HEIGHT && type !== WATER_COAST && type !== DEEPER_WATER) continue; // exclude all deep ocean points
// exclude ocean points far from coast
if (height < MIN_LAND_HEIGHT && type !== WATER_COAST && type !== DEEPER_WATER) continue;
const feature = features[gridCells.f[i]];
const isLake = feature && feature.type === "lake";
if (type === DEEPER_WATER && (i % 4 === 0 || isLake)) continue; // exclude non-coastal lake points
const [x, y] = points[i];
// exclude non-coastal lake points
if (type === DEEPER_WATER && (i % 4 === 0 || isLake)) continue;
const [x, y] = points[i];
addNewPoint(i, x, y, height);
// add additional points for cells along coast

View file

@ -375,7 +375,7 @@ const resolveDepressions = function (
return [initialCellHeights, {}];
}
INFO && console.info(`Resolved all depressions. Depressions: ${depressions[0]}. Iterations: ${depressions.length}`);
INFO && console.info(`resolved all ${depressions[0]} depressions in ${depressions.length} iterations`);
return [currentCellHeights, currentDrainableLakes];
// define lakes that potentially can be open (drained into another water body)