mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 17:51:24 +01:00
refactor: rivers generation
This commit is contained in:
parent
c1e7d6f54a
commit
3215b6f0d2
18 changed files with 739 additions and 704 deletions
|
|
@ -26,7 +26,7 @@ import {generateSeed} from "utils/probabilityUtils";
|
|||
import {byId} from "utils/shorthands";
|
||||
import {showStatistics} from "../statistics";
|
||||
import {createGrid} from "./grid";
|
||||
import {createPack} from "./pack";
|
||||
import {createPack} from "./pack/pack";
|
||||
import {getInputValue, setInputValue} from "utils/nodeUtils";
|
||||
// import {Ruler} from "modules/measurers";
|
||||
|
||||
|
|
@ -68,7 +68,7 @@ async function generate(options?: IGenerationOptions) {
|
|||
renderLayer("rivers", pack);
|
||||
|
||||
WARN && console.warn(`TOTAL: ${rn((performance.now() - timeStart) / 1000, 2)}s`);
|
||||
showStatistics();
|
||||
// showStatistics();
|
||||
INFO && console.groupEnd();
|
||||
} catch (error) {
|
||||
showGenerationError(error as Error);
|
||||
|
|
|
|||
72
src/scripts/generation/pack/lakes.ts
Normal file
72
src/scripts/generation/pack/lakes.ts
Normal file
|
|
@ -0,0 +1,72 @@
|
|||
// @ts-nocheckd
|
||||
import * as d3 from "d3";
|
||||
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {getRealHeight} from "utils/unitUtils";
|
||||
|
||||
export interface ILakeClimateData extends IPackFeatureLake {
|
||||
flux: number;
|
||||
temp: number;
|
||||
evaporation: number;
|
||||
outCell: number | undefined;
|
||||
river?: number;
|
||||
enteringFlux?: number;
|
||||
}
|
||||
|
||||
export const getClimateData = function (
|
||||
lakes: IPackFeatureLake[],
|
||||
heights: number[],
|
||||
drainableLakes: Dict<boolean>,
|
||||
gridReference: IPack["cells"]["g"],
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"]
|
||||
): ILakeClimateData[] {
|
||||
const lakeData = lakes.map(lake => {
|
||||
const {shoreline} = lake;
|
||||
|
||||
// default flux: sum of precipitation around lake
|
||||
const flux = shoreline.reduce((acc, cellId) => acc + precipitation[gridReference[cellId]], 0);
|
||||
|
||||
// temperature and evaporation to detect closed lakes
|
||||
const temp = rn(d3.mean(shoreline.map(cellId => temperature[gridReference[cellId]]))!, 1);
|
||||
|
||||
const height = getRealHeight(lake.height); // height in meters
|
||||
const cellEvaporation = ((700 * (temp + 0.006 * height)) / 50 + 75) / (80 - temp); // based on Penman formula, [1-11]
|
||||
const evaporation = rn(cellEvaporation * lake.cells);
|
||||
|
||||
const outCell =
|
||||
flux > evaporation && drainableLakes[lake.i]
|
||||
? shoreline[d3.scan(shoreline, (a, b) => heights[a] - heights[b])!]
|
||||
: undefined;
|
||||
|
||||
return {...lake, flux, temp, evaporation, outCell};
|
||||
});
|
||||
|
||||
return lakeData;
|
||||
};
|
||||
|
||||
export const mergeLakeData = function (
|
||||
features: TPackFeatures,
|
||||
lakeData: ILakeClimateData[],
|
||||
rivers: Pick<IRiver, "i">[]
|
||||
) {
|
||||
const updatedFeatures = features.map(feature => {
|
||||
if (!feature) return 0;
|
||||
if (feature.type !== "lake") return feature;
|
||||
|
||||
const lake = lakeData.find(lake => lake.i === feature.i);
|
||||
if (!lake) return feature;
|
||||
|
||||
const {flux, temp, evaporation} = lake;
|
||||
const inlets = lake.inlets?.filter(inlet => rivers.find(river => river.i === inlet));
|
||||
const outlet = rivers.find(river => river.i === lake.outlet)?.i;
|
||||
|
||||
const lakeFeature: IPackFeatureLake = {...feature, flux, temp, evaporation, inlets, outlet};
|
||||
if (!inlets || !inlets.length) delete lakeFeature.inlets;
|
||||
if (!outlet) delete lakeFeature.outlet;
|
||||
|
||||
return lakeFeature;
|
||||
});
|
||||
|
||||
return updatedFeatures as TPackFeatures;
|
||||
};
|
||||
|
|
@ -9,14 +9,15 @@ import {drawScaleBar} from "modules/measurers";
|
|||
import {addZones} from "modules/zones";
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {TIME} from "config/logging";
|
||||
import {UINT16_MAX} from "constants";
|
||||
import {UINT16_MAX} from "config/constants";
|
||||
import {calculateVoronoi} from "scripts/generation/graph";
|
||||
import {createTypedArray} from "utils/arrayUtils";
|
||||
import {pick} from "utils/functionUtils";
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {generateRivers} from "./rivers";
|
||||
|
||||
const {LAND_COAST, WATER_COAST, DEEPER_WATER} = DISTANCE_FIELD;
|
||||
const {Lakes, OceanLayers, Rivers, Biomes, Cultures, BurgsAndStates, Religions, Military, Markers, Names} = window;
|
||||
// const {Lakes, OceanLayers, Biomes, Cultures, BurgsAndStates, Religions, Military, Markers, Names} = window;
|
||||
|
||||
export function createPack(grid: IGrid): IPack {
|
||||
const {vertices, cells} = repackGrid(grid);
|
||||
|
|
@ -24,12 +25,11 @@ export function createPack(grid: IGrid): IPack {
|
|||
const markup = markupPackFeatures(grid, vertices, pick(cells, "v", "c", "b", "p", "h"));
|
||||
const {features, featureIds, distanceField, haven, harbor} = markup;
|
||||
|
||||
Rivers.generate(
|
||||
const {heights, flux, r, conf, rivers, mergedFeatures} = generateRivers(
|
||||
grid.cells.prec,
|
||||
grid.cells.temp,
|
||||
pick({...cells, f: featureIds, t: distanceField, haven}, "i", "c", "b", "g", "t", "h", "f", "haven"),
|
||||
features,
|
||||
true
|
||||
pick({...cells, f: featureIds, t: distanceField, haven}, "i", "c", "b", "g", "t", "h", "f", "haven", "p"),
|
||||
features
|
||||
);
|
||||
|
||||
// Lakes.defineGroup(newPack);
|
||||
|
|
@ -66,12 +66,17 @@ export function createPack(grid: IGrid): IPack {
|
|||
vertices,
|
||||
cells: {
|
||||
...cells,
|
||||
h: new Uint8Array(heights),
|
||||
f: featureIds,
|
||||
t: distanceField,
|
||||
haven,
|
||||
harbor
|
||||
harbor,
|
||||
fl: flux,
|
||||
r,
|
||||
conf
|
||||
},
|
||||
features
|
||||
features: mergedFeatures,
|
||||
rivers
|
||||
};
|
||||
|
||||
return pack;
|
||||
425
src/scripts/generation/pack/rivers.ts
Normal file
425
src/scripts/generation/pack/rivers.ts
Normal file
|
|
@ -0,0 +1,425 @@
|
|||
import * as d3 from "d3";
|
||||
|
||||
import {TIME, WARN} from "config/logging";
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {DISTANCE_FIELD, MAX_HEIGHT, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {getInputNumber} from "utils/nodeUtils";
|
||||
import {pick} from "utils/functionUtils";
|
||||
import {byId} from "utils/shorthands";
|
||||
import {mergeLakeData, getClimateData, ILakeClimateData} from "./lakes";
|
||||
|
||||
const {Rivers} = window;
|
||||
const {LAND_COAST} = DISTANCE_FIELD;
|
||||
|
||||
export function generateRivers(
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"],
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "p" | "b" | "g" | "t" | "h" | "f" | "haven">,
|
||||
features: TPackFeatures
|
||||
) {
|
||||
TIME && console.time("generateRivers");
|
||||
|
||||
Math.random = aleaPRNG(seed);
|
||||
|
||||
const riversData: {[river: string]: number[]} = {};
|
||||
const riverParents: {[river: string]: number} = {};
|
||||
|
||||
const cellsNumber = cells.i.length;
|
||||
|
||||
let nextRiverId = 1; // starts with 1
|
||||
|
||||
const gradientHeights = applyDistanceField({h: cells.h, c: cells.c, t: cells.t});
|
||||
const [currentCellHeights, drainableLakes] = resolveDepressions(
|
||||
pick(cells, "i", "c", "b", "f"),
|
||||
features,
|
||||
gradientHeights
|
||||
);
|
||||
|
||||
const points = Number(byId("pointsInput")?.dataset.cells);
|
||||
const cellsNumberModifier = (points / 10000) ** 0.25;
|
||||
|
||||
const {flux, lakeData} = drainWater();
|
||||
const {r, conf, rivers} = defineRivers();
|
||||
const heights = downcutRivers(currentCellHeights);
|
||||
|
||||
const mergedFeatures = mergeLakeData(features, lakeData, rivers);
|
||||
|
||||
TIME && console.timeEnd("generateRivers");
|
||||
|
||||
return {heights, flux, r, conf, rivers, mergedFeatures};
|
||||
|
||||
function drainWater() {
|
||||
const MIN_FLUX_TO_FORM_RIVER = 30;
|
||||
|
||||
const riverIds = new Uint16Array(cellsNumber);
|
||||
const confluence = new Uint8Array(cellsNumber);
|
||||
const flux = new Uint16Array(cellsNumber);
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
|
||||
const lakeData: ILakeClimateData[] = getClimateData(
|
||||
lakes,
|
||||
currentCellHeights,
|
||||
drainableLakes,
|
||||
cells.g,
|
||||
precipitation,
|
||||
temperature
|
||||
);
|
||||
const openLakes = lakeData.filter(lake => lake.outCell !== undefined);
|
||||
|
||||
const land = cells.i.filter(i => currentCellHeights[i] >= MIN_LAND_HEIGHT);
|
||||
land.sort((a, b) => currentCellHeights[b] - currentCellHeights[a]);
|
||||
|
||||
land.forEach(cellId => {
|
||||
flux[cellId] += precipitation[cells.g[cellId]] / cellsNumberModifier;
|
||||
|
||||
const lakesDrainingToCell = openLakes.filter(lake => lake.outCell === cellId);
|
||||
for (const lake of lakesDrainingToCell) {
|
||||
const lakeCell = cells.c[cellId].find(c => currentCellHeights[c] < MIN_LAND_HEIGHT && cells.f[c] === lake.i);
|
||||
if (!lakeCell) continue;
|
||||
|
||||
flux[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
|
||||
|
||||
// allow to chain lakes to keep river identity
|
||||
if (riverIds[lakeCell] !== lake.river) {
|
||||
const sameRiver = cells.c[lakeCell].some(c => riverIds[c] === lake.river);
|
||||
|
||||
if (lake.river && sameRiver) {
|
||||
riverIds[lakeCell] = lake.river;
|
||||
addCellToRiver(lakeCell, lake.river);
|
||||
} else {
|
||||
riverIds[lakeCell] = nextRiverId;
|
||||
addCellToRiver(lakeCell, nextRiverId);
|
||||
nextRiverId++;
|
||||
}
|
||||
}
|
||||
|
||||
lake.outlet = riverIds[lakeCell];
|
||||
flowDown(cellId, flux[lakeCell], lake.outlet);
|
||||
}
|
||||
|
||||
if (lakesDrainingToCell.length && lakesDrainingToCell[0].outlet) {
|
||||
// assign all tributary rivers to outlet basin
|
||||
const outlet = lakesDrainingToCell[0].outlet;
|
||||
for (const lakeDrainingToCell of lakesDrainingToCell) {
|
||||
if (!Array.isArray(lakeDrainingToCell.inlets)) continue;
|
||||
for (const inlet of lakeDrainingToCell.inlets) {
|
||||
riverParents[inlet] = outlet;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// near-border cell: pour water out of the screen
|
||||
if (cells.b[cellId] && riverIds[cellId]) return addCellToRiver(-1, riverIds[cellId]);
|
||||
|
||||
// downhill cell (make sure it's not in the source lake)
|
||||
let min = null;
|
||||
if (lakesDrainingToCell.length) {
|
||||
const filtered = cells.c[cellId].filter(c => !lakesDrainingToCell.map(lake => lake.i).includes(cells.f[c]));
|
||||
min = filtered.sort((a, b) => currentCellHeights[a] - currentCellHeights[b])[0];
|
||||
} else if (cells.haven[cellId]) {
|
||||
min = cells.haven[cellId];
|
||||
} else {
|
||||
min = cells.c[cellId].sort((a, b) => currentCellHeights[a] - currentCellHeights[b])[0];
|
||||
}
|
||||
|
||||
// cells is depressed
|
||||
if (currentCellHeights[cellId] <= currentCellHeights[min]) return;
|
||||
|
||||
debug
|
||||
.append("line")
|
||||
.attr("x1", cells.p[cellId][0])
|
||||
.attr("y1", cells.p[cellId][1])
|
||||
.attr("x2", cells.p[min][0])
|
||||
.attr("y2", cells.p[min][1])
|
||||
.attr("stroke", "#333")
|
||||
.attr("stroke-width", 0.1);
|
||||
|
||||
if (flux[cellId] < MIN_FLUX_TO_FORM_RIVER) {
|
||||
// flux is too small to operate as a river
|
||||
if (currentCellHeights[min] >= MIN_LAND_HEIGHT) flux[min] += flux[cellId];
|
||||
return;
|
||||
}
|
||||
|
||||
// create a new river
|
||||
if (!riverIds[cellId]) {
|
||||
riverIds[cellId] = nextRiverId;
|
||||
addCellToRiver(cellId, nextRiverId);
|
||||
nextRiverId++;
|
||||
}
|
||||
|
||||
flowDown(min, flux[cellId], riverIds[cellId]);
|
||||
});
|
||||
|
||||
return {flux, lakeData};
|
||||
|
||||
function flowDown(toCell: number, fromFlux: number, riverId: number) {
|
||||
const toFlux = flux[toCell] - confluence[toCell];
|
||||
const toRiver = riverIds[toCell];
|
||||
|
||||
if (toRiver) {
|
||||
// downhill cell already has river assigned
|
||||
if (fromFlux > toFlux) {
|
||||
confluence[toCell] += flux[toCell]; // mark confluence
|
||||
if (currentCellHeights[toCell] >= MIN_LAND_HEIGHT) {
|
||||
// min river is a tributary of current river
|
||||
riverParents[toRiver] = riverId;
|
||||
}
|
||||
riverIds[toCell] = riverId; // re-assign river if downhill part has less flux
|
||||
} else {
|
||||
confluence[toCell] += fromFlux; // mark confluence
|
||||
if (currentCellHeights[toCell] >= MIN_LAND_HEIGHT) {
|
||||
// current river is a tributary of min river
|
||||
riverParents[riverId] = toRiver;
|
||||
}
|
||||
}
|
||||
} else riverIds[toCell] = riverId; // assign the river to the downhill cell
|
||||
|
||||
if (currentCellHeights[toCell] < MIN_LAND_HEIGHT) {
|
||||
// pour water to the water body
|
||||
const lake = lakeData.find(lake => lake.i === cells.f[toCell]);
|
||||
|
||||
if (lake) {
|
||||
if (!lake.river || fromFlux > (lake.enteringFlux || 0)) {
|
||||
lake.river = riverId;
|
||||
lake.enteringFlux = fromFlux;
|
||||
}
|
||||
lake.flux = lake.flux + fromFlux;
|
||||
if (lake.inlets) lake.inlets.push(riverId);
|
||||
else lake.inlets = [riverId];
|
||||
}
|
||||
} else {
|
||||
// propagate flux and add next river segment
|
||||
flux[toCell] += fromFlux;
|
||||
}
|
||||
|
||||
addCellToRiver(toCell, riverId);
|
||||
}
|
||||
|
||||
function addCellToRiver(cellId: number, riverId: number) {
|
||||
if (riversData[riverId]) riversData[riverId].push(cellId);
|
||||
else riversData[riverId] = [cellId];
|
||||
}
|
||||
}
|
||||
|
||||
function defineRivers() {
|
||||
const r = new Uint16Array(cellsNumber);
|
||||
const conf = new Uint16Array(cellsNumber);
|
||||
const rivers: Omit<IRiver, "name" | "basin" | "type">[] = [];
|
||||
|
||||
const defaultWidthFactor = rn(1 / cellsNumberModifier, 2);
|
||||
const mainStemWidthFactor = defaultWidthFactor * 1.2;
|
||||
|
||||
for (const key in riversData) {
|
||||
const riverId = +key;
|
||||
const riverCells = riversData[key];
|
||||
if (riverCells.length < 3) continue; // exclude tiny rivers
|
||||
|
||||
for (const cell of riverCells) {
|
||||
if (cell < 0 || cells.h[cell] < MIN_LAND_HEIGHT) continue;
|
||||
|
||||
// mark confluences and assign river to cells
|
||||
if (r[cell]) conf[cell] = 1;
|
||||
else r[cell] = riverId;
|
||||
}
|
||||
|
||||
const source = riverCells[0];
|
||||
const mouth = riverCells.at(-2) || 0;
|
||||
const parent = riverParents[key] || 0;
|
||||
|
||||
const widthFactor = !parent || parent === riverId ? mainStemWidthFactor : defaultWidthFactor;
|
||||
const meanderedPoints: number[] = Rivers.addMeandering({fl: flux, conf, h: cells.h, p: cells.p}, riverCells);
|
||||
const discharge = flux[mouth]; // m3 in second
|
||||
const length: number = Rivers.getApproximateLength(meanderedPoints);
|
||||
const width: number = Rivers.getWidth(Rivers.getOffset(discharge, meanderedPoints.length, widthFactor, 0));
|
||||
|
||||
rivers.push({
|
||||
i: riverId,
|
||||
source,
|
||||
mouth,
|
||||
discharge,
|
||||
length,
|
||||
width,
|
||||
widthFactor,
|
||||
sourceWidth: 0,
|
||||
parent,
|
||||
cells: riverCells
|
||||
});
|
||||
}
|
||||
|
||||
// calculate confluence flux
|
||||
for (const i of cells.i) {
|
||||
if (!conf[i]) continue;
|
||||
|
||||
const sortedInflux = cells.c[i]
|
||||
.filter(c => r[c] && currentCellHeights[c] > currentCellHeights[i])
|
||||
.map(c => flux[c])
|
||||
.sort((a, b) => b - a);
|
||||
conf[i] = sortedInflux.reduce((acc, flux, index) => (index ? acc + flux : acc), 0);
|
||||
}
|
||||
|
||||
return {r, conf, rivers};
|
||||
}
|
||||
|
||||
function downcutRivers(heights: number[]) {
|
||||
const MAX_DOWNCUT = 5;
|
||||
const MIN_HEIGHT_TO_DOWNCUT = 35;
|
||||
|
||||
for (const i of cells.i) {
|
||||
if (heights[i] < MIN_HEIGHT_TO_DOWNCUT) continue; // don't downcut lowlands
|
||||
if (!flux[i]) continue;
|
||||
|
||||
const higherCells = cells.c[i].filter(c => heights[c] > heights[i]);
|
||||
const higherFlux = higherCells.reduce((acc, c) => acc + flux[c], 0) / higherCells.length;
|
||||
if (!higherFlux) continue;
|
||||
|
||||
const downcut = Math.floor(flux[i] / higherFlux);
|
||||
if (downcut) heights[i] -= Math.min(downcut, MAX_DOWNCUT);
|
||||
}
|
||||
|
||||
return heights;
|
||||
}
|
||||
}
|
||||
|
||||
// add distance to water value to land cells to make map less depressed
|
||||
const applyDistanceField = ({h, c, t}: Pick<IPack["cells"], "h" | "c" | "t">) => {
|
||||
return Array.from(h).map((height, index) => {
|
||||
if (height < MIN_LAND_HEIGHT || t[index] < LAND_COAST) return height;
|
||||
const mean = d3.mean(c[index].map(c => t[c])) || 0;
|
||||
return height + t[index] / 100 + mean / 10000;
|
||||
});
|
||||
};
|
||||
|
||||
// depression filling algorithm (for a correct water flux modeling)
|
||||
const resolveDepressions = function (
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "b" | "f">,
|
||||
features: TPackFeatures,
|
||||
heights: number[]
|
||||
): [number[], Dict<boolean>] {
|
||||
const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
|
||||
const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
|
||||
const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
|
||||
|
||||
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
|
||||
|
||||
const LAND_ELEVATION_INCREMENT = 0.1;
|
||||
const LAKE_ELEVATION_INCREMENT = 0.2;
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
|
||||
|
||||
const currentCellHeights = Array.from(heights);
|
||||
const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
|
||||
|
||||
const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
|
||||
const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
|
||||
|
||||
const drainableLakes = checkLakesDrainability();
|
||||
|
||||
const landCells = cells.i.filter(i => heights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
|
||||
landCells.sort((a, b) => heights[a] - heights[b]); // lowest cells go first
|
||||
|
||||
const depressions: number[] = [];
|
||||
|
||||
for (let iteration = 0; iteration && depressions.at(-1) && iteration < MAX_INTERATIONS; iteration++) {
|
||||
let depressionsLeft = 0;
|
||||
|
||||
// elevate potentially drainable lakes
|
||||
if (iteration < checkLakeMaxIteration) {
|
||||
for (const lake of lakes) {
|
||||
if (drainableLakes[lake.i] !== true) continue;
|
||||
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
if (minShoreHeight >= MAX_HEIGHT || lake.height > minShoreHeight) continue;
|
||||
|
||||
if (iteration > elevateLakeMaxIteration) {
|
||||
for (const shoreCellId of lake.shoreline) {
|
||||
// reset heights
|
||||
currentCellHeights[shoreCellId] = heights[shoreCellId];
|
||||
currentLakeHeights[lake.i] = lake.height;
|
||||
}
|
||||
|
||||
drainableLakes[lake.i] = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
}
|
||||
|
||||
for (const cellId of landCells) {
|
||||
const minHeight = getMinHeight(cells.c[cellId]);
|
||||
if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
|
||||
|
||||
currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
|
||||
depressions.push(depressionsLeft);
|
||||
|
||||
// check depression resolving progress
|
||||
if (depressions.length > 5) {
|
||||
const depressionsInitial = depressions.at(0) || 0;
|
||||
const depressiosRecently = depressions.at(-6) || 0;
|
||||
|
||||
const isProgressingOverall = depressionsInitial < depressionsLeft;
|
||||
if (!isProgressingOverall) return [heights, drainableLakes];
|
||||
|
||||
const isProgressingRecently = depressiosRecently < depressionsLeft;
|
||||
if (!isProgressingRecently) return [currentCellHeights, drainableLakes];
|
||||
}
|
||||
}
|
||||
|
||||
// define lakes that potentially can be open (drained into another water body)
|
||||
function checkLakesDrainability() {
|
||||
const canBeDrained: Dict<boolean> = {}; // all false by default
|
||||
const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
|
||||
|
||||
for (const lake of lakes) {
|
||||
if (drainAllLakes) {
|
||||
canBeDrained[lake.i] = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
canBeDrained[lake.i] = false;
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
const minHeightShoreCell = lake.shoreline.find(cellId => heights[cellId] === minShoreHeight) || lake.shoreline[0];
|
||||
|
||||
const queue = [minHeightShoreCell];
|
||||
const checked = [];
|
||||
checked[minHeightShoreCell] = true;
|
||||
const breakableHeight = lake.height + ELEVATION_LIMIT;
|
||||
|
||||
loopCellsAroundLake: while (queue.length) {
|
||||
const cellId = queue.pop()!;
|
||||
|
||||
for (const neibCellId of cells.c[cellId]) {
|
||||
if (checked[neibCellId]) continue;
|
||||
if (heights[neibCellId] >= breakableHeight) continue;
|
||||
|
||||
if (heights[neibCellId] < MIN_LAND_HEIGHT) {
|
||||
const waterFeatureMet = features[cells.f[neibCellId]];
|
||||
const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
|
||||
const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
|
||||
|
||||
if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
|
||||
canBeDrained[lake.i] = true;
|
||||
break loopCellsAroundLake;
|
||||
}
|
||||
}
|
||||
|
||||
checked[neibCellId] = true;
|
||||
queue.push(neibCellId);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return canBeDrained;
|
||||
}
|
||||
|
||||
depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`);
|
||||
|
||||
return [currentCellHeights, drainableLakes];
|
||||
};
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
import {MOBILE} from "../constants";
|
||||
import {MOBILE} from "../config/constants";
|
||||
import {byId} from "../utils/shorthands";
|
||||
|
||||
const $tooltip = byId("tooltip")!;
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue