mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 09:41:24 +01:00
refactor: rivers generation
This commit is contained in:
parent
c1e7d6f54a
commit
3215b6f0d2
18 changed files with 739 additions and 704 deletions
|
|
@ -7641,7 +7641,7 @@
|
|||
|
||||
<script type="module" src="/src/modules/heightmap-generator.js"></script>
|
||||
<script type="module" src="/src/modules/ocean-layers.js"></script>
|
||||
<script type="module" src="/src/modules/river-generator.ts"></script>
|
||||
<script type="module" src="/src/modules/rivers.js"></script>
|
||||
<script type="module" src="/src/modules/lakes.ts"></script>
|
||||
<script type="module" src="/src/modules/names-generator.js"></script>
|
||||
<script type="module" src="/src/modules/biomes.js"></script>
|
||||
|
|
|
|||
|
|
@ -1,3 +1,5 @@
|
|||
import {pick} from "utils/functionUtils";
|
||||
|
||||
export function drawRivers(pack: IPack) {
|
||||
rivers.selectAll("*").remove();
|
||||
|
||||
|
|
@ -12,7 +14,7 @@ export function drawRivers(pack: IPack) {
|
|||
points = undefined;
|
||||
}
|
||||
|
||||
const meanderedPoints = addMeandering(pack, cells, points);
|
||||
const meanderedPoints = addMeandering(pick(pack.cells, "fl", "conf", "h", "p"), cells, points);
|
||||
const path = getRiverPath(meanderedPoints, widthFactor, sourceWidth);
|
||||
return `<path id="river${i}" d="${path}"/>`;
|
||||
});
|
||||
|
|
|
|||
|
|
@ -1,70 +1,13 @@
|
|||
// @ts-nocheckd
|
||||
// @ts-nocheck
|
||||
import * as d3 from "d3";
|
||||
|
||||
import {TIME} from "config/logging";
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {getInputNumber, getInputValue} from "utils/nodeUtils";
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {byId} from "utils/shorthands";
|
||||
import {getRealHeight} from "utils/unitUtils";
|
||||
|
||||
window.Lakes = (function () {
|
||||
const setClimateData = function (
|
||||
heights: Uint8Array,
|
||||
lakes: IPackFeatureLake[],
|
||||
gridReference: IPack["cells"]["g"],
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"]
|
||||
) {
|
||||
const lakeOutCells = new Uint16Array(gridReference.length);
|
||||
|
||||
for (const lake of lakes) {
|
||||
const {firstCell, shoreline} = lake;
|
||||
|
||||
// default flux: sum of precipitation around lake
|
||||
lake.flux = shoreline.reduce((acc, cellId) => acc + precipitation[gridReference[cellId]], 0);
|
||||
|
||||
// temperature and evaporation to detect closed lakes
|
||||
lake.temp =
|
||||
lake.cells < 6
|
||||
? temperature[gridReference[firstCell]]
|
||||
: rn(d3.mean(shoreline.map(cellId => temperature[gridReference[cellId]]))!, 1);
|
||||
|
||||
const height = getRealHeight(lake.height); // height in meters
|
||||
const evaporation = ((700 * (lake.temp + 0.006 * height)) / 50 + 75) / (80 - lake.temp); // based on Penman formula, [1-11]
|
||||
lake.evaporation = rn(evaporation * lake.cells);
|
||||
|
||||
// no outlet for lakes in depressed areas
|
||||
// if (lake.closed) continue;
|
||||
|
||||
// lake outlet cell
|
||||
const outCell = shoreline[d3.scan(shoreline, (a, b) => heights[a] - heights[b])!];
|
||||
lake.outCell = outCell;
|
||||
lakeOutCells[lake.outCell] = lake.i;
|
||||
}
|
||||
|
||||
return lakeOutCells;
|
||||
};
|
||||
|
||||
const cleanupLakeData = function (pack: IPack) {
|
||||
for (const feature of pack.features) {
|
||||
if (feature.type !== "lake") continue;
|
||||
delete feature.river;
|
||||
delete feature.enteringFlux;
|
||||
delete feature.outCell;
|
||||
delete feature.closed;
|
||||
feature.height = rn(feature.height, 3);
|
||||
|
||||
const inlets = feature.inlets?.filter(r => pack.rivers.find(river => river.i === r));
|
||||
if (!inlets || !inlets.length) delete feature.inlets;
|
||||
else feature.inlets = inlets;
|
||||
|
||||
const outlet = feature.outlet && pack.rivers.find(river => river.i === feature.outlet);
|
||||
if (!outlet) delete feature.outlet;
|
||||
}
|
||||
};
|
||||
|
||||
const defineGroup = function (pack: IPack) {
|
||||
for (const feature of pack.features) {
|
||||
if (feature && feature.type === "lake") {
|
||||
|
|
@ -220,8 +163,6 @@ window.Lakes = (function () {
|
|||
}
|
||||
|
||||
return {
|
||||
setClimateData,
|
||||
cleanupLakeData,
|
||||
defineGroup,
|
||||
generateName,
|
||||
getName,
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@ import * as d3 from "d3";
|
|||
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {TIME} from "config/logging";
|
||||
import {INT8_MAX} from "constants";
|
||||
import {INT8_MAX} from "config/constants";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {getFeatureVertices} from "scripts/connectVertices";
|
||||
import {createTypedArray, unique} from "utils/arrayUtils";
|
||||
|
|
@ -254,7 +254,7 @@ function addFeature({
|
|||
function getLakeElevation() {
|
||||
const MIN_ELEVATION_DELTA = 0.1;
|
||||
const minShoreHeight = d3.min(shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT;
|
||||
return minShoreHeight - MIN_ELEVATION_DELTA;
|
||||
return rn(minShoreHeight - MIN_ELEVATION_DELTA, 2);
|
||||
}
|
||||
|
||||
const feature: IPackFeatureLake = {
|
||||
|
|
|
|||
|
|
@ -1,620 +0,0 @@
|
|||
import * as d3 from "d3";
|
||||
|
||||
import {TIME, WARN} from "config/logging";
|
||||
import {last} from "utils/arrayUtils";
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {round} from "utils/stringUtils";
|
||||
import {rw, each} from "utils/probabilityUtils";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {DISTANCE_FIELD, MAX_HEIGHT, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {getInputNumber} from "utils/nodeUtils";
|
||||
import {pick} from "utils/functionUtils";
|
||||
import {byId} from "utils/shorthands";
|
||||
|
||||
const {Lakes} = window;
|
||||
const {LAND_COAST} = DISTANCE_FIELD;
|
||||
|
||||
window.Rivers = (function () {
|
||||
const generate = function (
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"],
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "b" | "g" | "t" | "h" | "f" | "haven">,
|
||||
features: TPackFeatures,
|
||||
allowErosion = true
|
||||
) {
|
||||
TIME && console.time("generateRivers");
|
||||
|
||||
Math.random = aleaPRNG(seed);
|
||||
|
||||
const riversData = {}; // rivers data
|
||||
const riverParents = {};
|
||||
|
||||
const cellsNumber = cells.i.length;
|
||||
const riverIds = new Uint16Array(cellsNumber);
|
||||
const confluence = new Uint8Array(cellsNumber);
|
||||
|
||||
let nextRiverId = 1; // starts with 1
|
||||
|
||||
const gradientHeights = alterHeights({h: cells.h, c: cells.c, t: cells.t});
|
||||
const [currentCellHeights, currentLakeHeights] = resolveDepressions(
|
||||
pick(cells, "i", "c", "b", "f"),
|
||||
features,
|
||||
gradientHeights
|
||||
);
|
||||
|
||||
const flux = drainWater();
|
||||
defineRivers();
|
||||
|
||||
calculateConfluenceFlux();
|
||||
Lakes.cleanupLakeData(pack);
|
||||
|
||||
if (allowErosion) {
|
||||
cells.h = Uint8Array.from(currentCellHeights); // mutate heightmap
|
||||
downcutRivers(); // downcut river beds
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("generateRivers");
|
||||
|
||||
function drainWater() {
|
||||
const MIN_FLUX_TO_FORM_RIVER = 30;
|
||||
const points = Number(byId("pointsInput")?.dataset.cells);
|
||||
const cellsNumberModifier = (points / 10000) ** 0.25;
|
||||
|
||||
const land = cells.i.filter(i => currentCellHeights[i] >= MIN_LAND_HEIGHT);
|
||||
land.sort((a, b) => currentCellHeights[b] - currentCellHeights[a]);
|
||||
|
||||
const flux = new Uint16Array(cellsNumber);
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
const lakeOutCells = Lakes.setClimateData(currentCellHeights, lakes, cells.g, precipitation, temperature);
|
||||
|
||||
land.forEach(cellId => {
|
||||
flux[cellId] += precipitation[cells.g[cellId]] / cellsNumberModifier;
|
||||
|
||||
// create lake outlet if lake is not in deep depression and flux > evaporation
|
||||
const openLakes = lakeOutCells[cellId]
|
||||
? lakes.filter(({outCell, flux = 0, evaporation = 0}) => cellId === outCell && flux > evaporation)
|
||||
: [];
|
||||
|
||||
for (const lake of openLakes) {
|
||||
const lakeCell = cells.c[cellId].find(c => currentCellHeights[c] < MIN_LAND_HEIGHT && cells.f[c] === lake.i);
|
||||
flux[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
|
||||
|
||||
// allow chain lakes to retain identity
|
||||
if (riverIds[lakeCell] !== lake.river) {
|
||||
const sameRiver = cells.c[lakeCell].some(c => riverIds[c] === lake.river);
|
||||
|
||||
if (sameRiver) {
|
||||
riverIds[lakeCell] = lake.river;
|
||||
addCellToRiver(lakeCell, lake.river);
|
||||
} else {
|
||||
riverIds[lakeCell] = nextRiverId;
|
||||
addCellToRiver(lakeCell, nextRiverId);
|
||||
nextRiverId++;
|
||||
}
|
||||
}
|
||||
|
||||
lake.outlet = riverIds[lakeCell];
|
||||
flowDown(cellId, flux[lakeCell], lake.outlet);
|
||||
}
|
||||
|
||||
// assign all tributary rivers to outlet basin
|
||||
const outlet = openLakes[0]?.outlet;
|
||||
for (const lake of openLakes) {
|
||||
if (!Array.isArray(lake.inlets)) continue;
|
||||
for (const inlet of lake.inlets) {
|
||||
riverParents[inlet] = outlet;
|
||||
}
|
||||
}
|
||||
|
||||
// near-border cell: pour water out of the screen
|
||||
if (cells.b[cellId] && riverIds[cellId]) return addCellToRiver(-1, riverIds[cellId]);
|
||||
|
||||
// downhill cell (make sure it's not in the source lake)
|
||||
let min = null;
|
||||
if (lakeOutCells[cellId]) {
|
||||
const filtered = cells.c[cellId].filter(c => !openLakes.map(lake => lake.i).includes(cells.f[c]));
|
||||
min = filtered.sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
|
||||
} else if (cells.haven[cellId]) {
|
||||
min = cells.haven[cellId];
|
||||
} else {
|
||||
min = cells.c[cellId].sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
|
||||
}
|
||||
|
||||
// cells is depressed
|
||||
if (alteredHeights[cellId] <= alteredHeights[min]) return;
|
||||
|
||||
// debug
|
||||
// .append("line")
|
||||
// .attr("x1", pack.cells.p[i][0])
|
||||
// .attr("y1", pack.cells.p[i][1])
|
||||
// .attr("x2", pack.cells.p[min][0])
|
||||
// .attr("y2", pack.cells.p[min][1])
|
||||
// .attr("stroke", "#333")
|
||||
// .attr("stroke-width", 0.2);
|
||||
|
||||
if (flux[cellId] < MIN_FLUX_TO_FORM_RIVER) {
|
||||
// flux is too small to operate as a river
|
||||
if (alteredHeights[min] >= 20) flux[min] += flux[cellId];
|
||||
return;
|
||||
}
|
||||
|
||||
// proclaim a new river
|
||||
if (!riverIds[cellId]) {
|
||||
riverIds[cellId] = nextRiverId;
|
||||
addCellToRiver(cellId, nextRiverId);
|
||||
nextRiverId++;
|
||||
}
|
||||
|
||||
flowDown(min, flux[cellId], riverIds[cellId]);
|
||||
});
|
||||
|
||||
return flux;
|
||||
}
|
||||
|
||||
function addCellToRiver(cellId: number, riverId: number) {
|
||||
if (!riversData[riverId]) riversData[riverId] = [cellId];
|
||||
else riversData[riverId].push(cellId);
|
||||
}
|
||||
|
||||
function flowDown(toCell, fromFlux, river) {
|
||||
const toFlux = flux[toCell] - confluence[toCell];
|
||||
const toRiver = riverIds[toCell];
|
||||
|
||||
if (toRiver) {
|
||||
// downhill cell already has river assigned
|
||||
if (fromFlux > toFlux) {
|
||||
confluence[toCell] += flux[toCell]; // mark confluence
|
||||
if (alteredHeights[toCell] >= 20) riverParents[toRiver] = river; // min river is a tributary of current river
|
||||
riverIds[toCell] = river; // re-assign river if downhill part has less flux
|
||||
} else {
|
||||
confluence[toCell] += fromFlux; // mark confluence
|
||||
if (alteredHeights[toCell] >= 20) riverParents[river] = toRiver; // current river is a tributary of min river
|
||||
}
|
||||
} else riverIds[toCell] = river; // assign the river to the downhill cell
|
||||
|
||||
if (alteredHeights[toCell] < 20) {
|
||||
// pour water to the water body
|
||||
const waterBody = features[cells.f[toCell]];
|
||||
if (waterBody.type === "lake") {
|
||||
if (!waterBody.river || fromFlux > waterBody.enteringFlux) {
|
||||
waterBody.river = river;
|
||||
waterBody.enteringFlux = fromFlux;
|
||||
}
|
||||
waterBody.flux = waterBody.flux + fromFlux;
|
||||
if (!waterBody.inlets) waterBody.inlets = [river];
|
||||
else waterBody.inlets.push(river);
|
||||
}
|
||||
} else {
|
||||
// propagate flux and add next river segment
|
||||
flux[toCell] += fromFlux;
|
||||
}
|
||||
|
||||
addCellToRiver(toCell, river);
|
||||
}
|
||||
|
||||
function defineRivers() {
|
||||
// re-initialize rivers and confluence arrays
|
||||
riverIds = new Uint16Array(cellsNumber);
|
||||
confluence = new Uint16Array(cellsNumber);
|
||||
pack.rivers = [];
|
||||
|
||||
const defaultWidthFactor = rn(1 / (pointsInput.dataset.cells / 10000) ** 0.25, 2);
|
||||
const mainStemWidthFactor = defaultWidthFactor * 1.2;
|
||||
|
||||
for (const key in riversData) {
|
||||
const riverCells = riversData[key];
|
||||
if (riverCells.length < 3) continue; // exclude tiny rivers
|
||||
|
||||
const riverId = +key;
|
||||
for (const cell of riverCells) {
|
||||
if (cell < 0 || cells.h[cell] < 20) continue;
|
||||
|
||||
// mark real confluences and assign river to cells
|
||||
if (riverIds[cell]) confluence[cell] = 1;
|
||||
else riverIds[cell] = riverId;
|
||||
}
|
||||
|
||||
const source = riverCells[0];
|
||||
const mouth = riverCells[riverCells.length - 2];
|
||||
const parent = riverParents[key] || 0;
|
||||
|
||||
const widthFactor = !parent || parent === riverId ? mainStemWidthFactor : defaultWidthFactor;
|
||||
const meanderedPoints = addMeandering(pack, riverCells);
|
||||
const discharge = flux[mouth]; // m3 in second
|
||||
const length = getApproximateLength(meanderedPoints);
|
||||
const width = getWidth(getOffset(discharge, meanderedPoints.length, widthFactor, 0));
|
||||
|
||||
pack.rivers.push({
|
||||
i: riverId,
|
||||
source,
|
||||
mouth,
|
||||
discharge,
|
||||
length,
|
||||
width,
|
||||
widthFactor,
|
||||
sourceWidth: 0,
|
||||
parent,
|
||||
cells: riverCells
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
function downcutRivers() {
|
||||
const MAX_DOWNCUT = 5;
|
||||
|
||||
for (const i of pack.cells.i) {
|
||||
if (cells.h[i] < 35) continue; // don't donwcut lowlands
|
||||
if (!flux[i]) continue;
|
||||
|
||||
const higherCells = cells.c[i].filter(c => cells.h[c] > cells.h[i]);
|
||||
const higherFlux = higherCells.reduce((acc, c) => acc + flux[c], 0) / higherCells.length;
|
||||
if (!higherFlux) continue;
|
||||
|
||||
const downcut = Math.floor(flux[i] / higherFlux);
|
||||
if (downcut) cells.h[i] -= Math.min(downcut, MAX_DOWNCUT);
|
||||
}
|
||||
}
|
||||
|
||||
function calculateConfluenceFlux() {
|
||||
for (const i of cells.i) {
|
||||
if (!confluence[i]) continue;
|
||||
|
||||
const sortedInflux = cells.c[i]
|
||||
.filter(c => riverIds[c] && alteredHeights[c] > alteredHeights[i])
|
||||
.map(c => flux[c])
|
||||
.sort((a, b) => b - a);
|
||||
confluence[i] = sortedInflux.reduce((acc, flux, index) => (index ? acc + flux : acc), 0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// add distance to water value to land cells to make map less depressed
|
||||
const alterHeights = ({h, c, t}: Pick<IPack["cells"], "h" | "c" | "t">) => {
|
||||
return Array.from(h).map((height, index) => {
|
||||
if (height < MIN_LAND_HEIGHT || t[index] < LAND_COAST) return height;
|
||||
const mean = d3.mean(c[index].map(c => t[c])) || 0;
|
||||
return height + t[index] / 100 + mean / 10000;
|
||||
});
|
||||
};
|
||||
|
||||
// depression filling algorithm (for a correct water flux modeling)
|
||||
const resolveDepressions = function (
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "b" | "f">,
|
||||
features: TPackFeatures,
|
||||
heights: number[]
|
||||
): [number[], Dict<number>] {
|
||||
const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
|
||||
const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
|
||||
const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
|
||||
|
||||
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
|
||||
|
||||
const LAND_ELEVATION_INCREMENT = 0.1;
|
||||
const LAKE_ELEVATION_INCREMENT = 0.2;
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
|
||||
|
||||
const currentCellHeights = Array.from(heights);
|
||||
const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
|
||||
|
||||
const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
|
||||
const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
|
||||
|
||||
const drainableLakes = checkLakesDrainability();
|
||||
|
||||
const landCells = cells.i.filter(i => heights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
|
||||
landCells.sort((a, b) => heights[a] - heights[b]); // lowest cells go first
|
||||
|
||||
const depressions: number[] = [];
|
||||
|
||||
for (let iteration = 0; iteration && depressions.at(-1) && iteration < MAX_INTERATIONS; iteration++) {
|
||||
let depressionsLeft = 0;
|
||||
|
||||
// elevate potentially drainable lakes
|
||||
if (iteration < checkLakeMaxIteration) {
|
||||
for (const lake of lakes) {
|
||||
if (drainableLakes[lake.i] !== true) continue;
|
||||
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
if (minShoreHeight >= MAX_HEIGHT || lake.height > minShoreHeight) continue;
|
||||
|
||||
if (iteration > elevateLakeMaxIteration) {
|
||||
for (const shoreCellId of lake.shoreline) {
|
||||
// reset heights
|
||||
currentCellHeights[shoreCellId] = heights[shoreCellId];
|
||||
currentLakeHeights[lake.i] = lake.height;
|
||||
}
|
||||
|
||||
drainableLakes[lake.i] = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
}
|
||||
|
||||
for (const cellId of landCells) {
|
||||
const minHeight = getMinHeight(cells.c[cellId]);
|
||||
if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
|
||||
|
||||
currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
|
||||
depressions.push(depressionsLeft);
|
||||
|
||||
// check depression resolving progress
|
||||
if (depressions.length > 5) {
|
||||
const depressionsInitial = depressions.at(0) || 0;
|
||||
const depressiosRecently = depressions.at(-6) || 0;
|
||||
|
||||
const isProgressingOverall = depressionsInitial < depressionsLeft;
|
||||
if (!isProgressingOverall) return [heights, Object.fromEntries(lakes.map(({i, height}) => [i, height]))];
|
||||
|
||||
const isProgressingRecently = depressiosRecently < depressionsLeft;
|
||||
if (!isProgressingRecently) return [currentCellHeights, currentLakeHeights];
|
||||
}
|
||||
}
|
||||
|
||||
// define lakes that potentially can be open (drained into another water body)
|
||||
function checkLakesDrainability() {
|
||||
const canBeDrained: Dict<boolean> = {}; // all false by default
|
||||
const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
|
||||
|
||||
for (const lake of lakes) {
|
||||
if (drainAllLakes) {
|
||||
canBeDrained[lake.i] = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
canBeDrained[lake.i] = false;
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
const minHeightShoreCell =
|
||||
lake.shoreline.find(cellId => heights[cellId] === minShoreHeight) || lake.shoreline[0];
|
||||
|
||||
const queue = [minHeightShoreCell];
|
||||
const checked = [];
|
||||
checked[minHeightShoreCell] = true;
|
||||
const breakableHeight = lake.height + ELEVATION_LIMIT;
|
||||
|
||||
loopCellsAroundLake: while (queue.length) {
|
||||
const cellId = queue.pop()!;
|
||||
|
||||
for (const neibCellId of cells.c[cellId]) {
|
||||
if (checked[neibCellId]) continue;
|
||||
if (heights[neibCellId] >= breakableHeight) continue;
|
||||
|
||||
if (heights[neibCellId] < MIN_LAND_HEIGHT) {
|
||||
const waterFeatureMet = features[cells.f[neibCellId]];
|
||||
const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
|
||||
const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
|
||||
|
||||
if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
|
||||
canBeDrained[lake.i] = true;
|
||||
break loopCellsAroundLake;
|
||||
}
|
||||
}
|
||||
|
||||
checked[neibCellId] = true;
|
||||
queue.push(neibCellId);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return canBeDrained;
|
||||
}
|
||||
|
||||
depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`);
|
||||
|
||||
return [currentCellHeights, currentLakeHeights];
|
||||
};
|
||||
|
||||
// add points at 1/3 and 2/3 of a line between adjacents river cells
|
||||
const addMeandering = (pack, riverCells, riverPoints = null, meandering = 0.5) => {
|
||||
const {fl, conf, h} = pack.cells;
|
||||
const meandered = [];
|
||||
const lastStep = riverCells.length - 1;
|
||||
const points = getRiverPoints(pack, riverCells, riverPoints);
|
||||
let step = h[riverCells[0]] < 20 ? 1 : 10;
|
||||
|
||||
let fluxPrev = 0;
|
||||
const getFlux = (step, flux) => (step === lastStep ? fluxPrev : flux);
|
||||
|
||||
for (let i = 0; i <= lastStep; i++, step++) {
|
||||
const cell = riverCells[i];
|
||||
const isLastCell = i === lastStep;
|
||||
|
||||
const [x1, y1] = points[i];
|
||||
const flux1 = getFlux(i, fl[cell]);
|
||||
fluxPrev = flux1;
|
||||
|
||||
meandered.push([x1, y1, flux1]);
|
||||
if (isLastCell) break;
|
||||
|
||||
const nextCell = riverCells[i + 1];
|
||||
const [x2, y2] = points[i + 1];
|
||||
|
||||
if (nextCell === -1) {
|
||||
meandered.push([x2, y2, fluxPrev]);
|
||||
break;
|
||||
}
|
||||
|
||||
const dist2 = (x2 - x1) ** 2 + (y2 - y1) ** 2; // square distance between cells
|
||||
if (dist2 <= 25 && riverCells.length >= 6) continue;
|
||||
|
||||
const flux2 = getFlux(i + 1, fl[nextCell]);
|
||||
const keepInitialFlux = conf[nextCell] || flux1 === flux2;
|
||||
|
||||
const meander = meandering + 1 / step + Math.max(meandering - step / 100, 0);
|
||||
const angle = Math.atan2(y2 - y1, x2 - x1);
|
||||
const sinMeander = Math.sin(angle) * meander;
|
||||
const cosMeander = Math.cos(angle) * meander;
|
||||
|
||||
if (step < 10 && (dist2 > 64 || (dist2 > 36 && riverCells.length < 5))) {
|
||||
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
|
||||
const p1x = (x1 * 2 + x2) / 3 + -sinMeander;
|
||||
const p1y = (y1 * 2 + y2) / 3 + cosMeander;
|
||||
const p2x = (x1 + x2 * 2) / 3 + sinMeander / 2;
|
||||
const p2y = (y1 + y2 * 2) / 3 - cosMeander / 2;
|
||||
const [p1fl, p2fl] = keepInitialFlux ? [flux1, flux1] : [(flux1 * 2 + flux2) / 3, (flux1 + flux2 * 2) / 3];
|
||||
meandered.push([p1x, p1y, p1fl], [p2x, p2y, p2fl]);
|
||||
} else if (dist2 > 25 || riverCells.length < 6) {
|
||||
// if dist is medium or river is small add 1 extra middlepoint
|
||||
const p1x = (x1 + x2) / 2 + -sinMeander;
|
||||
const p1y = (y1 + y2) / 2 + cosMeander;
|
||||
const p1fl = keepInitialFlux ? flux1 : (flux1 + flux2) / 2;
|
||||
meandered.push([p1x, p1y, p1fl]);
|
||||
}
|
||||
}
|
||||
|
||||
return meandered;
|
||||
};
|
||||
|
||||
const getRiverPoints = (pack, riverCells, riverPoints) => {
|
||||
if (riverPoints) return riverPoints;
|
||||
|
||||
const {p} = pack.cells;
|
||||
return riverCells.map((cell, i) => {
|
||||
if (cell === -1) return getBorderPoint(pack, riverCells[i - 1]);
|
||||
return p[cell];
|
||||
});
|
||||
};
|
||||
|
||||
const getBorderPoint = (pack, i) => {
|
||||
const [x, y] = pack.cells.p[i];
|
||||
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
|
||||
if (min === y) return [x, 0];
|
||||
else if (min === graphHeight - y) return [x, graphHeight];
|
||||
else if (min === x) return [0, y];
|
||||
return [graphWidth, y];
|
||||
};
|
||||
|
||||
const FLUX_FACTOR = 500;
|
||||
const MAX_FLUX_WIDTH = 2;
|
||||
const LENGTH_FACTOR = 200;
|
||||
const STEP_WIDTH = 1 / LENGTH_FACTOR;
|
||||
const LENGTH_PROGRESSION = [1, 1, 2, 3, 5, 8, 13, 21, 34].map(n => n / LENGTH_FACTOR);
|
||||
const MAX_PROGRESSION = last(LENGTH_PROGRESSION);
|
||||
|
||||
const getOffset = (flux, pointNumber, widthFactor, startingWidth = 0) => {
|
||||
const fluxWidth = Math.min(flux ** 0.9 / FLUX_FACTOR, MAX_FLUX_WIDTH);
|
||||
const lengthWidth = pointNumber * STEP_WIDTH + (LENGTH_PROGRESSION[pointNumber] || MAX_PROGRESSION);
|
||||
return widthFactor * (lengthWidth + fluxWidth) + startingWidth;
|
||||
};
|
||||
|
||||
const lineGen = d3.line().curve(d3.curveBasis);
|
||||
|
||||
// build polygon from a list of points and calculated offset (width)
|
||||
const getRiverPath = function (points, widthFactor, startingWidth = 0) {
|
||||
const riverPointsLeft = [];
|
||||
const riverPointsRight = [];
|
||||
|
||||
for (let p = 0; p < points.length; p++) {
|
||||
const [x0, y0] = points[p - 1] || points[p];
|
||||
const [x1, y1, flux] = points[p];
|
||||
const [x2, y2] = points[p + 1] || points[p];
|
||||
|
||||
const offset = getOffset(flux, p, widthFactor, startingWidth);
|
||||
const angle = Math.atan2(y0 - y2, x0 - x2);
|
||||
const sinOffset = Math.sin(angle) * offset;
|
||||
const cosOffset = Math.cos(angle) * offset;
|
||||
|
||||
riverPointsLeft.push([x1 - sinOffset, y1 + cosOffset]);
|
||||
riverPointsRight.push([x1 + sinOffset, y1 - cosOffset]);
|
||||
}
|
||||
|
||||
const right = lineGen(riverPointsRight.reverse());
|
||||
let left = lineGen(riverPointsLeft);
|
||||
left = left.substring(left.indexOf("C"));
|
||||
|
||||
return round(right + left, 1);
|
||||
};
|
||||
|
||||
const specify = function () {
|
||||
const rivers = pack.rivers;
|
||||
if (!rivers.length) return;
|
||||
|
||||
for (const river of rivers) {
|
||||
river.basin = getBasin(river.i);
|
||||
river.name = getName(river.mouth);
|
||||
river.type = getType(river);
|
||||
}
|
||||
};
|
||||
|
||||
const getName = function (cell) {
|
||||
return Names.getCulture(pack.cells.culture[cell]);
|
||||
};
|
||||
|
||||
// weighted arrays of river type names
|
||||
const riverTypes = {
|
||||
main: {
|
||||
big: {River: 1},
|
||||
small: {Creek: 9, River: 3, Brook: 3, Stream: 1}
|
||||
},
|
||||
fork: {
|
||||
big: {Fork: 1},
|
||||
small: {Branch: 1}
|
||||
}
|
||||
};
|
||||
|
||||
let smallLength = null;
|
||||
const getType = function ({i, length, parent}) {
|
||||
if (smallLength === null) {
|
||||
const threshold = Math.ceil(pack.rivers.length * 0.15);
|
||||
smallLength = pack.rivers.map(r => r.length || 0).sort((a, b) => a - b)[threshold];
|
||||
}
|
||||
|
||||
const isSmall = length < smallLength;
|
||||
const isFork = each(3)(i) && parent && parent !== i;
|
||||
return rw(riverTypes[isFork ? "fork" : "main"][isSmall ? "small" : "big"]);
|
||||
};
|
||||
|
||||
const getApproximateLength = points => {
|
||||
const length = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i - 1][0], v[1] - p[i - 1][1]) : 0), 0);
|
||||
return rn(length, 2);
|
||||
};
|
||||
|
||||
// Real mouth width examples: Amazon 6000m, Volga 6000m, Dniepr 3000m, Mississippi 1300m, Themes 900m,
|
||||
// Danube 800m, Daugava 600m, Neva 500m, Nile 450m, Don 400m, Wisla 300m, Pripyat 150m, Bug 140m, Muchavets 40m
|
||||
const getWidth = (offset: number) => rn((offset / 1.5) ** 1.8, 2); // mouth width in km
|
||||
|
||||
// remove river and all its tributaries
|
||||
const remove = function (id: number) {
|
||||
const cells = pack.cells;
|
||||
const riversToRemove = pack.rivers.filter(r => r.i === id || r.parent === id || r.basin === id).map(r => r.i);
|
||||
riversToRemove.forEach(r => rivers.select("#river" + r).remove());
|
||||
cells.r.forEach((r, i) => {
|
||||
if (!r || !riversToRemove.includes(r)) return;
|
||||
cells.r[i] = 0;
|
||||
cells.fl[i] = grid.cells.prec[cells.g[i]];
|
||||
cells.conf[i] = 0;
|
||||
});
|
||||
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
|
||||
};
|
||||
|
||||
const getBasin = function (riverId: number) {
|
||||
const parent = pack.rivers.find(river => river.i === riverId)?.parent;
|
||||
if (!parent || riverId === parent) return riverId;
|
||||
return getBasin(parent);
|
||||
};
|
||||
|
||||
return {
|
||||
generate,
|
||||
alterHeights,
|
||||
resolveDepressions,
|
||||
addMeandering,
|
||||
getRiverPath,
|
||||
specify,
|
||||
getName,
|
||||
getType,
|
||||
getBasin,
|
||||
getWidth,
|
||||
getOffset,
|
||||
getApproximateLength,
|
||||
getRiverPoints,
|
||||
remove
|
||||
};
|
||||
})();
|
||||
210
src/modules/rivers.js
Normal file
210
src/modules/rivers.js
Normal file
|
|
@ -0,0 +1,210 @@
|
|||
import * as d3 from "d3";
|
||||
|
||||
import {last} from "utils/arrayUtils";
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {round} from "utils/stringUtils";
|
||||
import {rw, each} from "utils/probabilityUtils";
|
||||
import {MIN_LAND_HEIGHT} from "config/generation";
|
||||
|
||||
window.Rivers = (function () {
|
||||
// add points at 1/3 and 2/3 of a line between adjacents river cells
|
||||
const addMeandering = ({fl, conf, h, p}, riverCells, riverPoints = null, meandering = 0.5) => {
|
||||
const meandered = [];
|
||||
const lastStep = riverCells.length - 1;
|
||||
const points = getRiverPoints(p, riverCells, riverPoints);
|
||||
let step = h[riverCells[0]] < MIN_LAND_HEIGHT ? 1 : 10;
|
||||
|
||||
let fluxPrev = 0;
|
||||
const getFlux = (step, flux) => (step === lastStep ? fluxPrev : flux);
|
||||
|
||||
for (let i = 0; i <= lastStep; i++, step++) {
|
||||
const cell = riverCells[i];
|
||||
const isLastCell = i === lastStep;
|
||||
|
||||
const [x1, y1] = points[i];
|
||||
const flux1 = getFlux(i, fl[cell]);
|
||||
fluxPrev = flux1;
|
||||
|
||||
meandered.push([x1, y1, flux1]);
|
||||
if (isLastCell) break;
|
||||
|
||||
const nextCell = riverCells[i + 1];
|
||||
const [x2, y2] = points[i + 1];
|
||||
|
||||
if (nextCell === -1) {
|
||||
meandered.push([x2, y2, fluxPrev]);
|
||||
break;
|
||||
}
|
||||
|
||||
const dist2 = (x2 - x1) ** 2 + (y2 - y1) ** 2; // square distance between cells
|
||||
if (dist2 <= 25 && riverCells.length >= 6) continue;
|
||||
|
||||
const flux2 = getFlux(i + 1, fl[nextCell]);
|
||||
const keepInitialFlux = conf[nextCell] || flux1 === flux2;
|
||||
|
||||
const meander = meandering + 1 / step + Math.max(meandering - step / 100, 0);
|
||||
const angle = Math.atan2(y2 - y1, x2 - x1);
|
||||
const sinMeander = Math.sin(angle) * meander;
|
||||
const cosMeander = Math.cos(angle) * meander;
|
||||
|
||||
if (step < 10 && (dist2 > 64 || (dist2 > 36 && riverCells.length < 5))) {
|
||||
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
|
||||
const p1x = (x1 * 2 + x2) / 3 + -sinMeander;
|
||||
const p1y = (y1 * 2 + y2) / 3 + cosMeander;
|
||||
const p2x = (x1 + x2 * 2) / 3 + sinMeander / 2;
|
||||
const p2y = (y1 + y2 * 2) / 3 - cosMeander / 2;
|
||||
const [p1fl, p2fl] = keepInitialFlux ? [flux1, flux1] : [(flux1 * 2 + flux2) / 3, (flux1 + flux2 * 2) / 3];
|
||||
meandered.push([p1x, p1y, p1fl], [p2x, p2y, p2fl]);
|
||||
} else if (dist2 > 25 || riverCells.length < 6) {
|
||||
// if dist is medium or river is small add 1 extra middlepoint
|
||||
const p1x = (x1 + x2) / 2 + -sinMeander;
|
||||
const p1y = (y1 + y2) / 2 + cosMeander;
|
||||
const p1fl = keepInitialFlux ? flux1 : (flux1 + flux2) / 2;
|
||||
meandered.push([p1x, p1y, p1fl]);
|
||||
}
|
||||
}
|
||||
|
||||
return meandered;
|
||||
};
|
||||
|
||||
const getRiverPoints = (points, riverCells, riverPoints) => {
|
||||
if (riverPoints) return riverPoints;
|
||||
|
||||
return riverCells.map((cell, i) => {
|
||||
if (cell === -1) return getBorderPoint(points, riverCells[i - 1]);
|
||||
return points[cell];
|
||||
});
|
||||
};
|
||||
|
||||
const getBorderPoint = (points, i) => {
|
||||
const [x, y] = points[i];
|
||||
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
|
||||
if (min === y) return [x, 0];
|
||||
else if (min === graphHeight - y) return [x, graphHeight];
|
||||
else if (min === x) return [0, y];
|
||||
return [graphWidth, y];
|
||||
};
|
||||
|
||||
const FLUX_FACTOR = 500;
|
||||
const MAX_FLUX_WIDTH = 2;
|
||||
const LENGTH_FACTOR = 200;
|
||||
const STEP_WIDTH = 1 / LENGTH_FACTOR;
|
||||
const LENGTH_PROGRESSION = [1, 1, 2, 3, 5, 8, 13, 21, 34].map(n => n / LENGTH_FACTOR);
|
||||
const MAX_PROGRESSION = last(LENGTH_PROGRESSION);
|
||||
|
||||
const getOffset = (flux, pointNumber, widthFactor, startingWidth = 0) => {
|
||||
const fluxWidth = Math.min(flux ** 0.9 / FLUX_FACTOR, MAX_FLUX_WIDTH);
|
||||
const lengthWidth = pointNumber * STEP_WIDTH + (LENGTH_PROGRESSION[pointNumber] || MAX_PROGRESSION);
|
||||
return widthFactor * (lengthWidth + fluxWidth) + startingWidth;
|
||||
};
|
||||
|
||||
const lineGen = d3.line().curve(d3.curveBasis);
|
||||
|
||||
// build polygon from a list of points and calculated offset (width)
|
||||
const getRiverPath = function (points, widthFactor, startingWidth = 0) {
|
||||
const riverPointsLeft = [];
|
||||
const riverPointsRight = [];
|
||||
|
||||
for (let p = 0; p < points.length; p++) {
|
||||
const [x0, y0] = points[p - 1] || points[p];
|
||||
const [x1, y1, flux] = points[p];
|
||||
const [x2, y2] = points[p + 1] || points[p];
|
||||
|
||||
const offset = getOffset(flux, p, widthFactor, startingWidth);
|
||||
const angle = Math.atan2(y0 - y2, x0 - x2);
|
||||
const sinOffset = Math.sin(angle) * offset;
|
||||
const cosOffset = Math.cos(angle) * offset;
|
||||
|
||||
riverPointsLeft.push([x1 - sinOffset, y1 + cosOffset]);
|
||||
riverPointsRight.push([x1 + sinOffset, y1 - cosOffset]);
|
||||
}
|
||||
|
||||
const right = lineGen(riverPointsRight.reverse());
|
||||
let left = lineGen(riverPointsLeft);
|
||||
left = left.substring(left.indexOf("C"));
|
||||
|
||||
return round(right + left, 1);
|
||||
};
|
||||
|
||||
const specify = function () {
|
||||
const rivers = pack.rivers;
|
||||
if (!rivers.length) return;
|
||||
|
||||
for (const river of rivers) {
|
||||
river.basin = getBasin(river.i);
|
||||
river.name = getName(river.mouth);
|
||||
river.type = getType(river);
|
||||
}
|
||||
};
|
||||
|
||||
const getName = function (cell) {
|
||||
return Names.getCulture(pack.cells.culture[cell]);
|
||||
};
|
||||
|
||||
// weighted arrays of river type names
|
||||
const riverTypes = {
|
||||
main: {
|
||||
big: {River: 1},
|
||||
small: {Creek: 9, River: 3, Brook: 3, Stream: 1}
|
||||
},
|
||||
fork: {
|
||||
big: {Fork: 1},
|
||||
small: {Branch: 1}
|
||||
}
|
||||
};
|
||||
|
||||
let smallLength = null;
|
||||
const getType = function ({i, length, parent}) {
|
||||
if (smallLength === null) {
|
||||
const threshold = Math.ceil(pack.rivers.length * 0.15);
|
||||
smallLength = pack.rivers.map(r => r.length || 0).sort((a, b) => a - b)[threshold];
|
||||
}
|
||||
|
||||
const isSmall = length < smallLength;
|
||||
const isFork = each(3)(i) && parent && parent !== i;
|
||||
return rw(riverTypes[isFork ? "fork" : "main"][isSmall ? "small" : "big"]);
|
||||
};
|
||||
|
||||
const getApproximateLength = points => {
|
||||
const length = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i - 1][0], v[1] - p[i - 1][1]) : 0), 0);
|
||||
return rn(length, 2);
|
||||
};
|
||||
|
||||
// Real mouth width examples: Amazon 6000m, Volga 6000m, Dniepr 3000m, Mississippi 1300m, Themes 900m,
|
||||
// Danube 800m, Daugava 600m, Neva 500m, Nile 450m, Don 400m, Wisla 300m, Pripyat 150m, Bug 140m, Muchavets 40m
|
||||
const getWidth = offset => rn((offset / 1.5) ** 1.8, 2); // mouth width in km
|
||||
|
||||
// remove river and all its tributaries
|
||||
const remove = function (id) {
|
||||
const cells = pack.cells;
|
||||
const riversToRemove = pack.rivers.filter(r => r.i === id || r.parent === id || r.basin === id).map(r => r.i);
|
||||
riversToRemove.forEach(r => rivers.select("#river" + r).remove());
|
||||
cells.r.forEach((r, i) => {
|
||||
if (!r || !riversToRemove.includes(r)) return;
|
||||
cells.r[i] = 0;
|
||||
cells.fl[i] = grid.cells.prec[cells.g[i]];
|
||||
cells.conf[i] = 0;
|
||||
});
|
||||
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
|
||||
};
|
||||
|
||||
const getBasin = function (riverId) {
|
||||
const parent = pack.rivers.find(river => river.i === riverId)?.parent;
|
||||
if (!parent || riverId === parent) return riverId;
|
||||
return getBasin(parent);
|
||||
};
|
||||
|
||||
return {
|
||||
addMeandering,
|
||||
getRiverPath,
|
||||
specify,
|
||||
getName,
|
||||
getType,
|
||||
getBasin,
|
||||
getWidth,
|
||||
getOffset,
|
||||
getApproximateLength,
|
||||
getRiverPoints,
|
||||
remove
|
||||
};
|
||||
})();
|
||||
|
|
@ -570,7 +570,7 @@ function addRiverOnClick() {
|
|||
if (cells.b[i]) return;
|
||||
|
||||
const {
|
||||
alterHeights,
|
||||
applyDistanceField,
|
||||
resolveDepressions,
|
||||
addMeandering,
|
||||
getRiverPath,
|
||||
|
|
@ -588,7 +588,7 @@ function addRiverOnClick() {
|
|||
const initialFlux = grid.cells.prec[cells.g[i]];
|
||||
cells.fl[i] = initialFlux;
|
||||
|
||||
const h = alterHeights(pacl.cells);
|
||||
const h = applyDistanceField(pacl.cells);
|
||||
resolveDepressions(pack, h);
|
||||
|
||||
while (i) {
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ import {generateSeed} from "utils/probabilityUtils";
|
|||
import {byId} from "utils/shorthands";
|
||||
import {showStatistics} from "../statistics";
|
||||
import {createGrid} from "./grid";
|
||||
import {createPack} from "./pack";
|
||||
import {createPack} from "./pack/pack";
|
||||
import {getInputValue, setInputValue} from "utils/nodeUtils";
|
||||
// import {Ruler} from "modules/measurers";
|
||||
|
||||
|
|
@ -68,7 +68,7 @@ async function generate(options?: IGenerationOptions) {
|
|||
renderLayer("rivers", pack);
|
||||
|
||||
WARN && console.warn(`TOTAL: ${rn((performance.now() - timeStart) / 1000, 2)}s`);
|
||||
showStatistics();
|
||||
// showStatistics();
|
||||
INFO && console.groupEnd();
|
||||
} catch (error) {
|
||||
showGenerationError(error as Error);
|
||||
|
|
|
|||
72
src/scripts/generation/pack/lakes.ts
Normal file
72
src/scripts/generation/pack/lakes.ts
Normal file
|
|
@ -0,0 +1,72 @@
|
|||
// @ts-nocheckd
|
||||
import * as d3 from "d3";
|
||||
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {getRealHeight} from "utils/unitUtils";
|
||||
|
||||
export interface ILakeClimateData extends IPackFeatureLake {
|
||||
flux: number;
|
||||
temp: number;
|
||||
evaporation: number;
|
||||
outCell: number | undefined;
|
||||
river?: number;
|
||||
enteringFlux?: number;
|
||||
}
|
||||
|
||||
export const getClimateData = function (
|
||||
lakes: IPackFeatureLake[],
|
||||
heights: number[],
|
||||
drainableLakes: Dict<boolean>,
|
||||
gridReference: IPack["cells"]["g"],
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"]
|
||||
): ILakeClimateData[] {
|
||||
const lakeData = lakes.map(lake => {
|
||||
const {shoreline} = lake;
|
||||
|
||||
// default flux: sum of precipitation around lake
|
||||
const flux = shoreline.reduce((acc, cellId) => acc + precipitation[gridReference[cellId]], 0);
|
||||
|
||||
// temperature and evaporation to detect closed lakes
|
||||
const temp = rn(d3.mean(shoreline.map(cellId => temperature[gridReference[cellId]]))!, 1);
|
||||
|
||||
const height = getRealHeight(lake.height); // height in meters
|
||||
const cellEvaporation = ((700 * (temp + 0.006 * height)) / 50 + 75) / (80 - temp); // based on Penman formula, [1-11]
|
||||
const evaporation = rn(cellEvaporation * lake.cells);
|
||||
|
||||
const outCell =
|
||||
flux > evaporation && drainableLakes[lake.i]
|
||||
? shoreline[d3.scan(shoreline, (a, b) => heights[a] - heights[b])!]
|
||||
: undefined;
|
||||
|
||||
return {...lake, flux, temp, evaporation, outCell};
|
||||
});
|
||||
|
||||
return lakeData;
|
||||
};
|
||||
|
||||
export const mergeLakeData = function (
|
||||
features: TPackFeatures,
|
||||
lakeData: ILakeClimateData[],
|
||||
rivers: Pick<IRiver, "i">[]
|
||||
) {
|
||||
const updatedFeatures = features.map(feature => {
|
||||
if (!feature) return 0;
|
||||
if (feature.type !== "lake") return feature;
|
||||
|
||||
const lake = lakeData.find(lake => lake.i === feature.i);
|
||||
if (!lake) return feature;
|
||||
|
||||
const {flux, temp, evaporation} = lake;
|
||||
const inlets = lake.inlets?.filter(inlet => rivers.find(river => river.i === inlet));
|
||||
const outlet = rivers.find(river => river.i === lake.outlet)?.i;
|
||||
|
||||
const lakeFeature: IPackFeatureLake = {...feature, flux, temp, evaporation, inlets, outlet};
|
||||
if (!inlets || !inlets.length) delete lakeFeature.inlets;
|
||||
if (!outlet) delete lakeFeature.outlet;
|
||||
|
||||
return lakeFeature;
|
||||
});
|
||||
|
||||
return updatedFeatures as TPackFeatures;
|
||||
};
|
||||
|
|
@ -9,14 +9,15 @@ import {drawScaleBar} from "modules/measurers";
|
|||
import {addZones} from "modules/zones";
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {TIME} from "config/logging";
|
||||
import {UINT16_MAX} from "constants";
|
||||
import {UINT16_MAX} from "config/constants";
|
||||
import {calculateVoronoi} from "scripts/generation/graph";
|
||||
import {createTypedArray} from "utils/arrayUtils";
|
||||
import {pick} from "utils/functionUtils";
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {generateRivers} from "./rivers";
|
||||
|
||||
const {LAND_COAST, WATER_COAST, DEEPER_WATER} = DISTANCE_FIELD;
|
||||
const {Lakes, OceanLayers, Rivers, Biomes, Cultures, BurgsAndStates, Religions, Military, Markers, Names} = window;
|
||||
// const {Lakes, OceanLayers, Biomes, Cultures, BurgsAndStates, Religions, Military, Markers, Names} = window;
|
||||
|
||||
export function createPack(grid: IGrid): IPack {
|
||||
const {vertices, cells} = repackGrid(grid);
|
||||
|
|
@ -24,12 +25,11 @@ export function createPack(grid: IGrid): IPack {
|
|||
const markup = markupPackFeatures(grid, vertices, pick(cells, "v", "c", "b", "p", "h"));
|
||||
const {features, featureIds, distanceField, haven, harbor} = markup;
|
||||
|
||||
Rivers.generate(
|
||||
const {heights, flux, r, conf, rivers, mergedFeatures} = generateRivers(
|
||||
grid.cells.prec,
|
||||
grid.cells.temp,
|
||||
pick({...cells, f: featureIds, t: distanceField, haven}, "i", "c", "b", "g", "t", "h", "f", "haven"),
|
||||
features,
|
||||
true
|
||||
pick({...cells, f: featureIds, t: distanceField, haven}, "i", "c", "b", "g", "t", "h", "f", "haven", "p"),
|
||||
features
|
||||
);
|
||||
|
||||
// Lakes.defineGroup(newPack);
|
||||
|
|
@ -66,12 +66,17 @@ export function createPack(grid: IGrid): IPack {
|
|||
vertices,
|
||||
cells: {
|
||||
...cells,
|
||||
h: new Uint8Array(heights),
|
||||
f: featureIds,
|
||||
t: distanceField,
|
||||
haven,
|
||||
harbor
|
||||
harbor,
|
||||
fl: flux,
|
||||
r,
|
||||
conf
|
||||
},
|
||||
features
|
||||
features: mergedFeatures,
|
||||
rivers
|
||||
};
|
||||
|
||||
return pack;
|
||||
425
src/scripts/generation/pack/rivers.ts
Normal file
425
src/scripts/generation/pack/rivers.ts
Normal file
|
|
@ -0,0 +1,425 @@
|
|||
import * as d3 from "d3";
|
||||
|
||||
import {TIME, WARN} from "config/logging";
|
||||
import {rn} from "utils/numberUtils";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {DISTANCE_FIELD, MAX_HEIGHT, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {getInputNumber} from "utils/nodeUtils";
|
||||
import {pick} from "utils/functionUtils";
|
||||
import {byId} from "utils/shorthands";
|
||||
import {mergeLakeData, getClimateData, ILakeClimateData} from "./lakes";
|
||||
|
||||
const {Rivers} = window;
|
||||
const {LAND_COAST} = DISTANCE_FIELD;
|
||||
|
||||
export function generateRivers(
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"],
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "p" | "b" | "g" | "t" | "h" | "f" | "haven">,
|
||||
features: TPackFeatures
|
||||
) {
|
||||
TIME && console.time("generateRivers");
|
||||
|
||||
Math.random = aleaPRNG(seed);
|
||||
|
||||
const riversData: {[river: string]: number[]} = {};
|
||||
const riverParents: {[river: string]: number} = {};
|
||||
|
||||
const cellsNumber = cells.i.length;
|
||||
|
||||
let nextRiverId = 1; // starts with 1
|
||||
|
||||
const gradientHeights = applyDistanceField({h: cells.h, c: cells.c, t: cells.t});
|
||||
const [currentCellHeights, drainableLakes] = resolveDepressions(
|
||||
pick(cells, "i", "c", "b", "f"),
|
||||
features,
|
||||
gradientHeights
|
||||
);
|
||||
|
||||
const points = Number(byId("pointsInput")?.dataset.cells);
|
||||
const cellsNumberModifier = (points / 10000) ** 0.25;
|
||||
|
||||
const {flux, lakeData} = drainWater();
|
||||
const {r, conf, rivers} = defineRivers();
|
||||
const heights = downcutRivers(currentCellHeights);
|
||||
|
||||
const mergedFeatures = mergeLakeData(features, lakeData, rivers);
|
||||
|
||||
TIME && console.timeEnd("generateRivers");
|
||||
|
||||
return {heights, flux, r, conf, rivers, mergedFeatures};
|
||||
|
||||
function drainWater() {
|
||||
const MIN_FLUX_TO_FORM_RIVER = 30;
|
||||
|
||||
const riverIds = new Uint16Array(cellsNumber);
|
||||
const confluence = new Uint8Array(cellsNumber);
|
||||
const flux = new Uint16Array(cellsNumber);
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
|
||||
const lakeData: ILakeClimateData[] = getClimateData(
|
||||
lakes,
|
||||
currentCellHeights,
|
||||
drainableLakes,
|
||||
cells.g,
|
||||
precipitation,
|
||||
temperature
|
||||
);
|
||||
const openLakes = lakeData.filter(lake => lake.outCell !== undefined);
|
||||
|
||||
const land = cells.i.filter(i => currentCellHeights[i] >= MIN_LAND_HEIGHT);
|
||||
land.sort((a, b) => currentCellHeights[b] - currentCellHeights[a]);
|
||||
|
||||
land.forEach(cellId => {
|
||||
flux[cellId] += precipitation[cells.g[cellId]] / cellsNumberModifier;
|
||||
|
||||
const lakesDrainingToCell = openLakes.filter(lake => lake.outCell === cellId);
|
||||
for (const lake of lakesDrainingToCell) {
|
||||
const lakeCell = cells.c[cellId].find(c => currentCellHeights[c] < MIN_LAND_HEIGHT && cells.f[c] === lake.i);
|
||||
if (!lakeCell) continue;
|
||||
|
||||
flux[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
|
||||
|
||||
// allow to chain lakes to keep river identity
|
||||
if (riverIds[lakeCell] !== lake.river) {
|
||||
const sameRiver = cells.c[lakeCell].some(c => riverIds[c] === lake.river);
|
||||
|
||||
if (lake.river && sameRiver) {
|
||||
riverIds[lakeCell] = lake.river;
|
||||
addCellToRiver(lakeCell, lake.river);
|
||||
} else {
|
||||
riverIds[lakeCell] = nextRiverId;
|
||||
addCellToRiver(lakeCell, nextRiverId);
|
||||
nextRiverId++;
|
||||
}
|
||||
}
|
||||
|
||||
lake.outlet = riverIds[lakeCell];
|
||||
flowDown(cellId, flux[lakeCell], lake.outlet);
|
||||
}
|
||||
|
||||
if (lakesDrainingToCell.length && lakesDrainingToCell[0].outlet) {
|
||||
// assign all tributary rivers to outlet basin
|
||||
const outlet = lakesDrainingToCell[0].outlet;
|
||||
for (const lakeDrainingToCell of lakesDrainingToCell) {
|
||||
if (!Array.isArray(lakeDrainingToCell.inlets)) continue;
|
||||
for (const inlet of lakeDrainingToCell.inlets) {
|
||||
riverParents[inlet] = outlet;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// near-border cell: pour water out of the screen
|
||||
if (cells.b[cellId] && riverIds[cellId]) return addCellToRiver(-1, riverIds[cellId]);
|
||||
|
||||
// downhill cell (make sure it's not in the source lake)
|
||||
let min = null;
|
||||
if (lakesDrainingToCell.length) {
|
||||
const filtered = cells.c[cellId].filter(c => !lakesDrainingToCell.map(lake => lake.i).includes(cells.f[c]));
|
||||
min = filtered.sort((a, b) => currentCellHeights[a] - currentCellHeights[b])[0];
|
||||
} else if (cells.haven[cellId]) {
|
||||
min = cells.haven[cellId];
|
||||
} else {
|
||||
min = cells.c[cellId].sort((a, b) => currentCellHeights[a] - currentCellHeights[b])[0];
|
||||
}
|
||||
|
||||
// cells is depressed
|
||||
if (currentCellHeights[cellId] <= currentCellHeights[min]) return;
|
||||
|
||||
debug
|
||||
.append("line")
|
||||
.attr("x1", cells.p[cellId][0])
|
||||
.attr("y1", cells.p[cellId][1])
|
||||
.attr("x2", cells.p[min][0])
|
||||
.attr("y2", cells.p[min][1])
|
||||
.attr("stroke", "#333")
|
||||
.attr("stroke-width", 0.1);
|
||||
|
||||
if (flux[cellId] < MIN_FLUX_TO_FORM_RIVER) {
|
||||
// flux is too small to operate as a river
|
||||
if (currentCellHeights[min] >= MIN_LAND_HEIGHT) flux[min] += flux[cellId];
|
||||
return;
|
||||
}
|
||||
|
||||
// create a new river
|
||||
if (!riverIds[cellId]) {
|
||||
riverIds[cellId] = nextRiverId;
|
||||
addCellToRiver(cellId, nextRiverId);
|
||||
nextRiverId++;
|
||||
}
|
||||
|
||||
flowDown(min, flux[cellId], riverIds[cellId]);
|
||||
});
|
||||
|
||||
return {flux, lakeData};
|
||||
|
||||
function flowDown(toCell: number, fromFlux: number, riverId: number) {
|
||||
const toFlux = flux[toCell] - confluence[toCell];
|
||||
const toRiver = riverIds[toCell];
|
||||
|
||||
if (toRiver) {
|
||||
// downhill cell already has river assigned
|
||||
if (fromFlux > toFlux) {
|
||||
confluence[toCell] += flux[toCell]; // mark confluence
|
||||
if (currentCellHeights[toCell] >= MIN_LAND_HEIGHT) {
|
||||
// min river is a tributary of current river
|
||||
riverParents[toRiver] = riverId;
|
||||
}
|
||||
riverIds[toCell] = riverId; // re-assign river if downhill part has less flux
|
||||
} else {
|
||||
confluence[toCell] += fromFlux; // mark confluence
|
||||
if (currentCellHeights[toCell] >= MIN_LAND_HEIGHT) {
|
||||
// current river is a tributary of min river
|
||||
riverParents[riverId] = toRiver;
|
||||
}
|
||||
}
|
||||
} else riverIds[toCell] = riverId; // assign the river to the downhill cell
|
||||
|
||||
if (currentCellHeights[toCell] < MIN_LAND_HEIGHT) {
|
||||
// pour water to the water body
|
||||
const lake = lakeData.find(lake => lake.i === cells.f[toCell]);
|
||||
|
||||
if (lake) {
|
||||
if (!lake.river || fromFlux > (lake.enteringFlux || 0)) {
|
||||
lake.river = riverId;
|
||||
lake.enteringFlux = fromFlux;
|
||||
}
|
||||
lake.flux = lake.flux + fromFlux;
|
||||
if (lake.inlets) lake.inlets.push(riverId);
|
||||
else lake.inlets = [riverId];
|
||||
}
|
||||
} else {
|
||||
// propagate flux and add next river segment
|
||||
flux[toCell] += fromFlux;
|
||||
}
|
||||
|
||||
addCellToRiver(toCell, riverId);
|
||||
}
|
||||
|
||||
function addCellToRiver(cellId: number, riverId: number) {
|
||||
if (riversData[riverId]) riversData[riverId].push(cellId);
|
||||
else riversData[riverId] = [cellId];
|
||||
}
|
||||
}
|
||||
|
||||
function defineRivers() {
|
||||
const r = new Uint16Array(cellsNumber);
|
||||
const conf = new Uint16Array(cellsNumber);
|
||||
const rivers: Omit<IRiver, "name" | "basin" | "type">[] = [];
|
||||
|
||||
const defaultWidthFactor = rn(1 / cellsNumberModifier, 2);
|
||||
const mainStemWidthFactor = defaultWidthFactor * 1.2;
|
||||
|
||||
for (const key in riversData) {
|
||||
const riverId = +key;
|
||||
const riverCells = riversData[key];
|
||||
if (riverCells.length < 3) continue; // exclude tiny rivers
|
||||
|
||||
for (const cell of riverCells) {
|
||||
if (cell < 0 || cells.h[cell] < MIN_LAND_HEIGHT) continue;
|
||||
|
||||
// mark confluences and assign river to cells
|
||||
if (r[cell]) conf[cell] = 1;
|
||||
else r[cell] = riverId;
|
||||
}
|
||||
|
||||
const source = riverCells[0];
|
||||
const mouth = riverCells.at(-2) || 0;
|
||||
const parent = riverParents[key] || 0;
|
||||
|
||||
const widthFactor = !parent || parent === riverId ? mainStemWidthFactor : defaultWidthFactor;
|
||||
const meanderedPoints: number[] = Rivers.addMeandering({fl: flux, conf, h: cells.h, p: cells.p}, riverCells);
|
||||
const discharge = flux[mouth]; // m3 in second
|
||||
const length: number = Rivers.getApproximateLength(meanderedPoints);
|
||||
const width: number = Rivers.getWidth(Rivers.getOffset(discharge, meanderedPoints.length, widthFactor, 0));
|
||||
|
||||
rivers.push({
|
||||
i: riverId,
|
||||
source,
|
||||
mouth,
|
||||
discharge,
|
||||
length,
|
||||
width,
|
||||
widthFactor,
|
||||
sourceWidth: 0,
|
||||
parent,
|
||||
cells: riverCells
|
||||
});
|
||||
}
|
||||
|
||||
// calculate confluence flux
|
||||
for (const i of cells.i) {
|
||||
if (!conf[i]) continue;
|
||||
|
||||
const sortedInflux = cells.c[i]
|
||||
.filter(c => r[c] && currentCellHeights[c] > currentCellHeights[i])
|
||||
.map(c => flux[c])
|
||||
.sort((a, b) => b - a);
|
||||
conf[i] = sortedInflux.reduce((acc, flux, index) => (index ? acc + flux : acc), 0);
|
||||
}
|
||||
|
||||
return {r, conf, rivers};
|
||||
}
|
||||
|
||||
function downcutRivers(heights: number[]) {
|
||||
const MAX_DOWNCUT = 5;
|
||||
const MIN_HEIGHT_TO_DOWNCUT = 35;
|
||||
|
||||
for (const i of cells.i) {
|
||||
if (heights[i] < MIN_HEIGHT_TO_DOWNCUT) continue; // don't downcut lowlands
|
||||
if (!flux[i]) continue;
|
||||
|
||||
const higherCells = cells.c[i].filter(c => heights[c] > heights[i]);
|
||||
const higherFlux = higherCells.reduce((acc, c) => acc + flux[c], 0) / higherCells.length;
|
||||
if (!higherFlux) continue;
|
||||
|
||||
const downcut = Math.floor(flux[i] / higherFlux);
|
||||
if (downcut) heights[i] -= Math.min(downcut, MAX_DOWNCUT);
|
||||
}
|
||||
|
||||
return heights;
|
||||
}
|
||||
}
|
||||
|
||||
// add distance to water value to land cells to make map less depressed
|
||||
const applyDistanceField = ({h, c, t}: Pick<IPack["cells"], "h" | "c" | "t">) => {
|
||||
return Array.from(h).map((height, index) => {
|
||||
if (height < MIN_LAND_HEIGHT || t[index] < LAND_COAST) return height;
|
||||
const mean = d3.mean(c[index].map(c => t[c])) || 0;
|
||||
return height + t[index] / 100 + mean / 10000;
|
||||
});
|
||||
};
|
||||
|
||||
// depression filling algorithm (for a correct water flux modeling)
|
||||
const resolveDepressions = function (
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "b" | "f">,
|
||||
features: TPackFeatures,
|
||||
heights: number[]
|
||||
): [number[], Dict<boolean>] {
|
||||
const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
|
||||
const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
|
||||
const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
|
||||
|
||||
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
|
||||
|
||||
const LAND_ELEVATION_INCREMENT = 0.1;
|
||||
const LAKE_ELEVATION_INCREMENT = 0.2;
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
|
||||
|
||||
const currentCellHeights = Array.from(heights);
|
||||
const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
|
||||
|
||||
const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
|
||||
const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
|
||||
|
||||
const drainableLakes = checkLakesDrainability();
|
||||
|
||||
const landCells = cells.i.filter(i => heights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
|
||||
landCells.sort((a, b) => heights[a] - heights[b]); // lowest cells go first
|
||||
|
||||
const depressions: number[] = [];
|
||||
|
||||
for (let iteration = 0; iteration && depressions.at(-1) && iteration < MAX_INTERATIONS; iteration++) {
|
||||
let depressionsLeft = 0;
|
||||
|
||||
// elevate potentially drainable lakes
|
||||
if (iteration < checkLakeMaxIteration) {
|
||||
for (const lake of lakes) {
|
||||
if (drainableLakes[lake.i] !== true) continue;
|
||||
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
if (minShoreHeight >= MAX_HEIGHT || lake.height > minShoreHeight) continue;
|
||||
|
||||
if (iteration > elevateLakeMaxIteration) {
|
||||
for (const shoreCellId of lake.shoreline) {
|
||||
// reset heights
|
||||
currentCellHeights[shoreCellId] = heights[shoreCellId];
|
||||
currentLakeHeights[lake.i] = lake.height;
|
||||
}
|
||||
|
||||
drainableLakes[lake.i] = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
}
|
||||
|
||||
for (const cellId of landCells) {
|
||||
const minHeight = getMinHeight(cells.c[cellId]);
|
||||
if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
|
||||
|
||||
currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
|
||||
depressions.push(depressionsLeft);
|
||||
|
||||
// check depression resolving progress
|
||||
if (depressions.length > 5) {
|
||||
const depressionsInitial = depressions.at(0) || 0;
|
||||
const depressiosRecently = depressions.at(-6) || 0;
|
||||
|
||||
const isProgressingOverall = depressionsInitial < depressionsLeft;
|
||||
if (!isProgressingOverall) return [heights, drainableLakes];
|
||||
|
||||
const isProgressingRecently = depressiosRecently < depressionsLeft;
|
||||
if (!isProgressingRecently) return [currentCellHeights, drainableLakes];
|
||||
}
|
||||
}
|
||||
|
||||
// define lakes that potentially can be open (drained into another water body)
|
||||
function checkLakesDrainability() {
|
||||
const canBeDrained: Dict<boolean> = {}; // all false by default
|
||||
const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
|
||||
|
||||
for (const lake of lakes) {
|
||||
if (drainAllLakes) {
|
||||
canBeDrained[lake.i] = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
canBeDrained[lake.i] = false;
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
const minHeightShoreCell = lake.shoreline.find(cellId => heights[cellId] === minShoreHeight) || lake.shoreline[0];
|
||||
|
||||
const queue = [minHeightShoreCell];
|
||||
const checked = [];
|
||||
checked[minHeightShoreCell] = true;
|
||||
const breakableHeight = lake.height + ELEVATION_LIMIT;
|
||||
|
||||
loopCellsAroundLake: while (queue.length) {
|
||||
const cellId = queue.pop()!;
|
||||
|
||||
for (const neibCellId of cells.c[cellId]) {
|
||||
if (checked[neibCellId]) continue;
|
||||
if (heights[neibCellId] >= breakableHeight) continue;
|
||||
|
||||
if (heights[neibCellId] < MIN_LAND_HEIGHT) {
|
||||
const waterFeatureMet = features[cells.f[neibCellId]];
|
||||
const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
|
||||
const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
|
||||
|
||||
if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
|
||||
canBeDrained[lake.i] = true;
|
||||
break loopCellsAroundLake;
|
||||
}
|
||||
}
|
||||
|
||||
checked[neibCellId] = true;
|
||||
queue.push(neibCellId);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return canBeDrained;
|
||||
}
|
||||
|
||||
depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`);
|
||||
|
||||
return [currentCellHeights, drainableLakes];
|
||||
};
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
import {MOBILE} from "../constants";
|
||||
import {MOBILE} from "../config/constants";
|
||||
import {byId} from "../utils/shorthands";
|
||||
|
||||
const $tooltip = byId("tooltip")!;
|
||||
|
|
|
|||
2
src/types/overrides.d.ts
vendored
2
src/types/overrides.d.ts
vendored
|
|
@ -14,6 +14,7 @@ interface Window {
|
|||
|
||||
// untyped IIFE modules
|
||||
Biomes: any;
|
||||
Rivers: any;
|
||||
Names: any;
|
||||
ThreeD: any;
|
||||
ReliefIcons: any;
|
||||
|
|
@ -21,7 +22,6 @@ interface Window {
|
|||
Lakes: any;
|
||||
HeightmapGenerator: any;
|
||||
OceanLayers: any;
|
||||
Rivers: any;
|
||||
Cultures: any;
|
||||
BurgsAndStates: any;
|
||||
Religions: any;
|
||||
|
|
|
|||
3
src/types/pack/feature.d.ts
vendored
3
src/types/pack/feature.d.ts
vendored
|
|
@ -30,7 +30,8 @@ interface IPackFeatureLake extends IPackFeatureBase {
|
|||
flux?: number;
|
||||
temp?: number;
|
||||
evaporation?: number;
|
||||
outCell?: number;
|
||||
inlets?: number[];
|
||||
outlet?: number;
|
||||
}
|
||||
|
||||
type TPackFeature = IPackFeatureOcean | IPackFeatureIsland | IPackFeatureLake;
|
||||
|
|
|
|||
6
src/types/pack/pack.d.ts
vendored
6
src/types/pack/pack.d.ts
vendored
|
|
@ -17,9 +17,9 @@ interface IPackCells {
|
|||
g: UintArray;
|
||||
s: IntArray;
|
||||
pop: Float32Array;
|
||||
fl: UintArray;
|
||||
conf: UintArray;
|
||||
r: UintArray;
|
||||
fl: Uint16Array; // flux volume, defined by drainWater() in river-generator.ts
|
||||
r: Uint16Array; // river id, defined by defineRivers() in river-generator.ts
|
||||
conf: Uint16Array; // conluence, defined by defineRivers() in river-generator.ts
|
||||
biome: UintArray;
|
||||
area: UintArray;
|
||||
state: UintArray;
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
import {UINT16_MAX, UINT32_MAX, UINT8_MAX} from "../constants";
|
||||
import {UINT16_MAX, UINT32_MAX, UINT8_MAX} from "../config/constants";
|
||||
|
||||
export function last<T>(array: T[]) {
|
||||
return array[array.length - 1];
|
||||
|
|
|
|||
|
|
@ -68,7 +68,6 @@ export default defineConfig(({mode}) => {
|
|||
{find: "src", replacement: path.resolve(pathName, "./src")},
|
||||
{find: "components", replacement: path.resolve(pathName, "./src/components")},
|
||||
{find: "config", replacement: path.resolve(pathName, "./src/config")},
|
||||
{find: "constants", replacement: path.resolve(pathName, "./src/constants")},
|
||||
{find: "dialogs", replacement: path.resolve(pathName, "./src/dialogs")},
|
||||
{find: "layers", replacement: path.resolve(pathName, "./src/layers")},
|
||||
{find: "libs", replacement: path.resolve(pathName, "./src/libs")},
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue