mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-18 18:11:24 +01:00
refactor: addLakesInDeepDepressions
This commit is contained in:
parent
b2f16c4b8f
commit
3c6da6585e
16 changed files with 250 additions and 266 deletions
|
|
@ -9,6 +9,7 @@ import {byId} from "utils/shorthands";
|
|||
import {ERROR} from "../config/logging";
|
||||
import {lim, minmax} from "../utils/numberUtils";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {addLakesInDeepDepressions} from "scripts/generation/grid/lakes";
|
||||
|
||||
window.HeightmapGenerator = (function () {
|
||||
let grid = null;
|
||||
|
|
@ -77,7 +78,10 @@ window.HeightmapGenerator = (function () {
|
|||
|
||||
Math.random = aleaPRNG(seed);
|
||||
const isTemplate = id in heightmapTemplates;
|
||||
const heights = isTemplate ? fromTemplate(graph, id) : await fromPrecreated(graph, id);
|
||||
const rawHeights = isTemplate ? fromTemplate(graph, id) : await fromPrecreated(graph, id);
|
||||
|
||||
const heights = addLakesInDeepDepressions(rawHeights, graph.cells.c, graph.cells.v, graph.vertices, graph.cells.i);
|
||||
|
||||
TIME && console.timeEnd("defineHeightmap");
|
||||
|
||||
clearData();
|
||||
|
|
|
|||
|
|
@ -1,126 +0,0 @@
|
|||
// @ts-nocheck
|
||||
import * as d3 from "d3";
|
||||
|
||||
import {TIME} from "config/logging";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {getInputNumber, getInputValue} from "utils/nodeUtils";
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {byId} from "utils/shorthands";
|
||||
|
||||
window.Lakes = (function () {
|
||||
const {LAND_COAST, WATER_COAST} = DISTANCE_FIELD;
|
||||
|
||||
function addLakesInDeepDepressions(grid: IGraph & Partial<IGrid>) {
|
||||
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
|
||||
if (ELEVATION_LIMIT === 80) return;
|
||||
|
||||
TIME && console.time("addLakesInDeepDepressions");
|
||||
const {cells, features} = grid;
|
||||
if (!features) throw new Error("addLakesInDeepDepressions: features are not defined");
|
||||
const {c, h, b} = cells;
|
||||
|
||||
for (const i of cells.i) {
|
||||
if (b[i] || h[i] < MIN_LAND_HEIGHT) continue;
|
||||
|
||||
const minHeight = d3.min(c[i].map(c => h[c])) || 0;
|
||||
if (h[i] > minHeight) continue;
|
||||
|
||||
let deep = true;
|
||||
const threshold = h[i] + ELEVATION_LIMIT;
|
||||
const queue = [i];
|
||||
const checked = [];
|
||||
checked[i] = true;
|
||||
|
||||
// check if elevated cell can potentially pour to water
|
||||
while (deep && queue.length) {
|
||||
const q = queue.pop()!;
|
||||
|
||||
for (const n of c[q]) {
|
||||
if (checked[n]) continue;
|
||||
if (h[n] >= threshold) continue;
|
||||
if (h[n] < MIN_LAND_HEIGHT) {
|
||||
deep = false;
|
||||
break;
|
||||
}
|
||||
|
||||
checked[n] = true;
|
||||
queue.push(n);
|
||||
}
|
||||
}
|
||||
|
||||
// if not, add a lake
|
||||
if (deep) {
|
||||
const lakeCells = [i].concat(c[i].filter(n => h[n] === h[i]));
|
||||
addLake(lakeCells);
|
||||
}
|
||||
}
|
||||
|
||||
function addLake(lakeCells: number[]) {
|
||||
const featureId = features!.length;
|
||||
|
||||
for (const lakeCellId of lakeCells) {
|
||||
cells.h[lakeCellId] = MIN_LAND_HEIGHT - 1;
|
||||
cells.t[lakeCellId] = WATER_COAST;
|
||||
cells.f[lakeCellId] = featureId;
|
||||
|
||||
for (const neibCellId of c[lakeCellId]) {
|
||||
if (!lakeCells.includes(neibCellId)) cells.t[neibCellId] = LAND_COAST;
|
||||
}
|
||||
}
|
||||
|
||||
features!.push({i: featureId, land: false, border: false, type: "lake"});
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("addLakesInDeepDepressions");
|
||||
}
|
||||
|
||||
// near sea lakes usually get a lot of water inflow, most of them should brake threshold and flow out to sea (see Ancylus Lake)
|
||||
function openNearSeaLakes(grid: IGraph & Partial<IGrid>) {
|
||||
if (getInputValue("templateInput") === "Atoll") return; // no need for Atolls
|
||||
|
||||
const {cells, features} = grid;
|
||||
if (!features?.find(f => f && f.type === "lake")) return; // no lakes
|
||||
|
||||
TIME && console.time("openLakes");
|
||||
const LIMIT = 22; // max height that can be breached by water
|
||||
|
||||
const isLake = (featureId: number) => featureId && (features[featureId] as IGridFeature).type === "lake";
|
||||
const isOcean = (featureId: number) => featureId && (features[featureId] as IGridFeature).type === "ocean";
|
||||
|
||||
for (const cellId of cells.i) {
|
||||
const featureId = cells.f[cellId];
|
||||
if (!isLake(featureId)) continue; // not a lake cell
|
||||
|
||||
check_neighbours: for (const neibCellId of cells.c[cellId]) {
|
||||
// water cannot brake the barrier
|
||||
if (cells.t[neibCellId] !== WATER_COAST || cells.h[neibCellId] > LIMIT) continue;
|
||||
|
||||
for (const neibOfNeibCellId of cells.c[neibCellId]) {
|
||||
const neibOfNeibFeatureId = cells.f[neibOfNeibCellId];
|
||||
if (!isOcean(neibOfNeibFeatureId)) continue; // not an ocean
|
||||
removeLake(neibCellId, featureId, neibOfNeibFeatureId);
|
||||
break check_neighbours;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function removeLake(barrierCellId: number, lakeFeatureId: number, oceanFeatureId: number) {
|
||||
cells.h[barrierCellId] = MIN_LAND_HEIGHT - 1;
|
||||
cells.t[barrierCellId] = WATER_COAST;
|
||||
cells.f[barrierCellId] = oceanFeatureId;
|
||||
|
||||
for (const neibCellId of cells.c[barrierCellId]) {
|
||||
if (cells.h[neibCellId] >= MIN_LAND_HEIGHT) cells.t[neibCellId] = LAND_COAST;
|
||||
}
|
||||
|
||||
if (features && lakeFeatureId) {
|
||||
// mark former lake as ocean
|
||||
(features[lakeFeatureId] as IGridFeature).type = "ocean";
|
||||
}
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("openLakes");
|
||||
}
|
||||
|
||||
return {generateName, getName, addLakesInDeepDepressions, openNearSeaLakes};
|
||||
})();
|
||||
|
|
@ -1,322 +0,0 @@
|
|||
import * as d3 from "d3";
|
||||
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {TIME} from "config/logging";
|
||||
import {INT8_MAX} from "config/constants";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {getFeatureVertices} from "scripts/connectVertices";
|
||||
import {createTypedArray, unique} from "utils/arrayUtils";
|
||||
import {dist2} from "utils/functionUtils";
|
||||
import {clipPoly} from "utils/lineUtils";
|
||||
import {rn} from "utils/numberUtils";
|
||||
|
||||
const {UNMARKED, LAND_COAST, WATER_COAST, LANDLOCKED, DEEPER_WATER} = DISTANCE_FIELD;
|
||||
|
||||
// define features (oceans, lakes, islands)
|
||||
export function markupGridFeatures(grid: IGridWithHeights) {
|
||||
TIME && console.time("markupGridFeatures");
|
||||
Math.random = aleaPRNG(seed); // get the same result on heightmap edit in Erase mode
|
||||
|
||||
if (!grid.cells || !grid.cells.h) {
|
||||
throw new Error("markupGridFeatures: grid.cells.h is required");
|
||||
}
|
||||
|
||||
const cells = grid.cells;
|
||||
const heights = cells.h;
|
||||
const n = cells.i.length;
|
||||
|
||||
const featureIds = new Uint16Array(n); // starts from 1
|
||||
const distanceField = new Int8Array(n);
|
||||
const features: TGridFeatures = [0];
|
||||
|
||||
const queue = [0];
|
||||
for (let featureId = 1; queue[0] !== -1; featureId++) {
|
||||
const firstCell = queue[0];
|
||||
featureIds[firstCell] = featureId;
|
||||
|
||||
const land = heights[firstCell] >= MIN_LAND_HEIGHT;
|
||||
let border = false; // set true if feature touches map edge
|
||||
|
||||
while (queue.length) {
|
||||
const cellId = queue.pop()!;
|
||||
if (cells.b[cellId]) border = true;
|
||||
|
||||
for (const neighborId of cells.c[cellId]) {
|
||||
const isNeibLand = heights[neighborId] >= MIN_LAND_HEIGHT;
|
||||
|
||||
if (land === isNeibLand && featureIds[neighborId] === UNMARKED) {
|
||||
featureIds[neighborId] = featureId;
|
||||
queue.push(neighborId);
|
||||
} else if (land && !isNeibLand) {
|
||||
distanceField[cellId] = LAND_COAST;
|
||||
distanceField[neighborId] = WATER_COAST;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const type = land ? "island" : border ? "ocean" : "lake";
|
||||
features.push({i: featureId, land, border, type});
|
||||
|
||||
queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell
|
||||
}
|
||||
|
||||
// markup deep ocean cells
|
||||
const dfOceanMarked = markup({
|
||||
distanceField,
|
||||
neighbors: grid.cells.c,
|
||||
start: DEEPER_WATER,
|
||||
increment: -1,
|
||||
limit: -10
|
||||
});
|
||||
|
||||
TIME && console.timeEnd("markupGridFeatures");
|
||||
return {featureIds, distanceField: dfOceanMarked, features};
|
||||
}
|
||||
|
||||
// define features (oceans, lakes, islands) add related details
|
||||
export function markupPackFeatures(
|
||||
grid: IGrid,
|
||||
vertices: IGraphVertices,
|
||||
cells: Pick<IPack["cells"], "c" | "v" | "b" | "p" | "h">
|
||||
) {
|
||||
TIME && console.time("markupPackFeatures");
|
||||
|
||||
const gridCellsNumber = grid.cells.h.length;
|
||||
const packCellsNumber = cells.c.length;
|
||||
|
||||
const features: TPackFeatures = [0];
|
||||
const featureIds = new Uint16Array(packCellsNumber); // ids of features, starts from 1
|
||||
const distanceField = new Int8Array(packCellsNumber); // distance from coast; 1 = land along coast; -1 = water along coast
|
||||
const haven = createTypedArray({maxValue: packCellsNumber, length: packCellsNumber}); // haven (opposite water cell)
|
||||
const harbor = new Uint8Array(packCellsNumber); // harbor (number of adjacent water cells)
|
||||
|
||||
const defineHaven = (cellId: number) => {
|
||||
const waterCells = cells.c[cellId].filter(c => cells.h[c] < MIN_LAND_HEIGHT);
|
||||
const distances = waterCells.map(c => dist2(cells.p[cellId], cells.p[c]));
|
||||
const closest = distances.indexOf(Math.min.apply(Math, distances));
|
||||
|
||||
haven[cellId] = waterCells[closest];
|
||||
harbor[cellId] = waterCells.length;
|
||||
};
|
||||
|
||||
const queue = [0];
|
||||
for (let featureId = 1; queue[0] !== -1; featureId++) {
|
||||
const firstCell = queue[0];
|
||||
featureIds[firstCell] = featureId; // assign feature number
|
||||
|
||||
const land = cells.h[firstCell] >= MIN_LAND_HEIGHT;
|
||||
let border = false; // true if feature touches map border
|
||||
let cellNumber = 1; // count cells in a feature
|
||||
|
||||
while (queue.length) {
|
||||
const cellId = queue.pop()!;
|
||||
if (cells.b[cellId]) border = true;
|
||||
|
||||
for (const neighborId of cells.c[cellId]) {
|
||||
const isNeibLand = cells.h[neighborId] >= MIN_LAND_HEIGHT;
|
||||
|
||||
if (land && !isNeibLand) {
|
||||
distanceField[cellId] = LAND_COAST;
|
||||
distanceField[neighborId] = WATER_COAST;
|
||||
if (!haven[cellId]) defineHaven(cellId);
|
||||
} else if (land && isNeibLand) {
|
||||
if (distanceField[neighborId] === UNMARKED && distanceField[cellId] === LAND_COAST)
|
||||
distanceField[neighborId] = LANDLOCKED;
|
||||
else if (distanceField[cellId] === UNMARKED && distanceField[neighborId] === LAND_COAST)
|
||||
distanceField[cellId] = LANDLOCKED;
|
||||
}
|
||||
|
||||
if (!featureIds[neighborId] && land === isNeibLand) {
|
||||
queue.push(neighborId);
|
||||
featureIds[neighborId] = featureId;
|
||||
cellNumber++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const featureVertices = getFeatureVertices({firstCell, vertices, cells, featureIds, featureId});
|
||||
const points = clipPoly(featureVertices.map(vertex => vertices.p[vertex]));
|
||||
const area = d3.polygonArea(points); // feature perimiter area
|
||||
|
||||
const feature = addFeature({
|
||||
vertices,
|
||||
heights: cells.h,
|
||||
features,
|
||||
featureIds,
|
||||
firstCell,
|
||||
land,
|
||||
border,
|
||||
featureVertices,
|
||||
featureId,
|
||||
cellNumber,
|
||||
gridCellsNumber,
|
||||
area
|
||||
});
|
||||
features.push(feature);
|
||||
|
||||
queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell
|
||||
}
|
||||
|
||||
// markup pack land cells
|
||||
const dfLandMarked = markup({distanceField, neighbors: cells.c, start: LANDLOCKED + 1, increment: 1});
|
||||
|
||||
TIME && console.timeEnd("markupPackFeatures");
|
||||
|
||||
return {features, featureIds, distanceField: dfLandMarked, haven, harbor};
|
||||
}
|
||||
|
||||
function addFeature({
|
||||
vertices,
|
||||
heights,
|
||||
features,
|
||||
featureIds,
|
||||
firstCell,
|
||||
land,
|
||||
border,
|
||||
featureVertices,
|
||||
featureId,
|
||||
cellNumber,
|
||||
gridCellsNumber,
|
||||
area
|
||||
}: {
|
||||
vertices: IGraphVertices;
|
||||
heights: Uint8Array;
|
||||
features: TPackFeatures;
|
||||
featureIds: Uint16Array;
|
||||
firstCell: number;
|
||||
land: boolean;
|
||||
border: boolean;
|
||||
featureVertices: number[];
|
||||
featureId: number;
|
||||
cellNumber: number;
|
||||
gridCellsNumber: number;
|
||||
area: number;
|
||||
}) {
|
||||
const OCEAN_MIN_SIZE = gridCellsNumber / 25;
|
||||
const SEA_MIN_SIZE = gridCellsNumber / 1000;
|
||||
const CONTINENT_MIN_SIZE = gridCellsNumber / 10;
|
||||
const ISLAND_MIN_SIZE = gridCellsNumber / 1000;
|
||||
|
||||
const absArea = Math.abs(rn(area));
|
||||
|
||||
if (land) return addIsland();
|
||||
if (border) return addOcean();
|
||||
return addLake();
|
||||
|
||||
function addIsland() {
|
||||
const group = defineIslandGroup();
|
||||
const feature: IPackFeatureIsland = {
|
||||
i: featureId,
|
||||
type: "island",
|
||||
group,
|
||||
land: true,
|
||||
border,
|
||||
cells: cellNumber,
|
||||
firstCell,
|
||||
vertices: featureVertices,
|
||||
area: absArea
|
||||
};
|
||||
return feature;
|
||||
}
|
||||
|
||||
function addOcean() {
|
||||
const group = defineOceanGroup();
|
||||
const feature: IPackFeatureOcean = {
|
||||
i: featureId,
|
||||
type: "ocean",
|
||||
group,
|
||||
land: false,
|
||||
border: false,
|
||||
cells: cellNumber,
|
||||
firstCell,
|
||||
vertices: featureVertices,
|
||||
area: absArea
|
||||
};
|
||||
return feature;
|
||||
}
|
||||
|
||||
function addLake() {
|
||||
const group = "freshwater"; // temp, to be defined later
|
||||
const name = ""; // temp, to be defined later
|
||||
|
||||
// ensure lake ring is clockwise (to form a hole)
|
||||
const lakeVertices = area > 0 ? featureVertices.reverse() : featureVertices;
|
||||
|
||||
const shoreline = getShoreline(); // land cells around lake
|
||||
const height = getLakeElevation();
|
||||
|
||||
function getShoreline() {
|
||||
const isLand = (cellId: number) => heights[cellId] >= MIN_LAND_HEIGHT;
|
||||
const cellsAround = lakeVertices.map(vertex => vertices.c[vertex].filter(isLand)).flat();
|
||||
return unique(cellsAround);
|
||||
}
|
||||
|
||||
function getLakeElevation() {
|
||||
const MIN_ELEVATION_DELTA = 0.1;
|
||||
const minShoreHeight = d3.min(shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT;
|
||||
return rn(minShoreHeight - MIN_ELEVATION_DELTA, 2);
|
||||
}
|
||||
|
||||
const feature: IPackFeatureLake = {
|
||||
i: featureId,
|
||||
type: "lake",
|
||||
group,
|
||||
name,
|
||||
land: false,
|
||||
border: false,
|
||||
cells: cellNumber,
|
||||
firstCell,
|
||||
vertices: lakeVertices,
|
||||
shoreline: shoreline,
|
||||
height,
|
||||
area: absArea
|
||||
};
|
||||
return feature;
|
||||
}
|
||||
|
||||
function defineOceanGroup() {
|
||||
if (cellNumber > OCEAN_MIN_SIZE) return "ocean";
|
||||
if (cellNumber > SEA_MIN_SIZE) return "sea";
|
||||
return "gulf";
|
||||
}
|
||||
|
||||
function defineIslandGroup() {
|
||||
const prevFeature = features[featureIds[firstCell - 1]];
|
||||
|
||||
if (prevFeature && prevFeature.type === "lake") return "lake_island";
|
||||
if (cellNumber > CONTINENT_MIN_SIZE) return "continent";
|
||||
if (cellNumber > ISLAND_MIN_SIZE) return "island";
|
||||
return "isle";
|
||||
}
|
||||
}
|
||||
|
||||
// calculate distance to coast for every cell
|
||||
function markup({
|
||||
distanceField,
|
||||
neighbors,
|
||||
start,
|
||||
increment,
|
||||
limit = INT8_MAX
|
||||
}: {
|
||||
distanceField: Int8Array;
|
||||
neighbors: number[][];
|
||||
start: number;
|
||||
increment: number;
|
||||
limit?: number;
|
||||
}) {
|
||||
for (let distance = start, marked = Infinity; marked > 0 && distance > limit; distance += increment) {
|
||||
marked = 0;
|
||||
const prevDistance = distance - increment;
|
||||
for (let cellId = 0; cellId < neighbors.length; cellId++) {
|
||||
if (distanceField[cellId] !== prevDistance) continue;
|
||||
|
||||
for (const neighborId of neighbors[cellId]) {
|
||||
if (distanceField[neighborId] !== UNMARKED) continue;
|
||||
distanceField[neighborId] = distance;
|
||||
marked++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return distanceField;
|
||||
}
|
||||
|
|
@ -1,167 +0,0 @@
|
|||
import * as d3 from "d3";
|
||||
|
||||
import {TIME} from "config/logging";
|
||||
import {minmax} from "utils/numberUtils";
|
||||
import {rand} from "utils/probabilityUtils";
|
||||
|
||||
// simplest precipitation model
|
||||
export function generatePrecipitation(grid) {
|
||||
TIME && console.time("generatePrecipitation");
|
||||
prec.selectAll("*").remove();
|
||||
|
||||
const {cells, cellsX, cellsY} = grid;
|
||||
const precipitation = new Uint8Array(cells.i.length); // precipitation array
|
||||
|
||||
const cellsNumberModifier = (pointsInput.dataset.cells / 10000) ** 0.25;
|
||||
const precInputModifier = precInput.value / 100;
|
||||
const modifier = cellsNumberModifier * precInputModifier;
|
||||
|
||||
const westerly = [];
|
||||
const easterly = [];
|
||||
let southerly = 0;
|
||||
let northerly = 0;
|
||||
|
||||
// precipitation modifier per latitude band
|
||||
// x4 = 0-5 latitude: wet through the year (rising zone)
|
||||
// x2 = 5-20 latitude: wet summer (rising zone), dry winter (sinking zone)
|
||||
// x1 = 20-30 latitude: dry all year (sinking zone)
|
||||
// x2 = 30-50 latitude: wet winter (rising zone), dry summer (sinking zone)
|
||||
// x3 = 50-60 latitude: wet all year (rising zone)
|
||||
// x2 = 60-70 latitude: wet summer (rising zone), dry winter (sinking zone)
|
||||
// x1 = 70-85 latitude: dry all year (sinking zone)
|
||||
// x0.5 = 85-90 latitude: dry all year (sinking zone)
|
||||
const latitudeModifier = [4, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 1, 1, 1, 0.5];
|
||||
const MAX_PASSABLE_ELEVATION = 85;
|
||||
|
||||
// define wind directions based on cells latitude and prevailing winds there
|
||||
d3.range(0, cells.i.length, cellsX).forEach(function (c, i) {
|
||||
const lat = mapCoordinates.latN - (i / cellsY) * mapCoordinates.latT;
|
||||
const latBand = ((Math.abs(lat) - 1) / 5) | 0;
|
||||
const latMod = latitudeModifier[latBand];
|
||||
const windTier = (Math.abs(lat - 89) / 30) | 0; // 30d tiers from 0 to 5 from N to S
|
||||
const {isWest, isEast, isNorth, isSouth} = getWindDirections(windTier);
|
||||
|
||||
if (isWest) westerly.push([c, latMod, windTier]);
|
||||
if (isEast) easterly.push([c + cellsX - 1, latMod, windTier]);
|
||||
if (isNorth) northerly++;
|
||||
if (isSouth) southerly++;
|
||||
});
|
||||
|
||||
// distribute winds by direction
|
||||
if (westerly.length) passWind(westerly, 120 * modifier, 1, cellsX);
|
||||
if (easterly.length) passWind(easterly, 120 * modifier, -1, cellsX);
|
||||
|
||||
const vertT = southerly + northerly;
|
||||
if (northerly) {
|
||||
const bandN = ((Math.abs(mapCoordinates.latN) - 1) / 5) | 0;
|
||||
const latModN = mapCoordinates.latT > 60 ? d3.mean(latitudeModifier) : latitudeModifier[bandN];
|
||||
const maxPrecN = (northerly / vertT) * 60 * modifier * latModN;
|
||||
passWind(d3.range(0, cellsX, 1), maxPrecN, cellsX, cellsY);
|
||||
}
|
||||
|
||||
if (southerly) {
|
||||
const bandS = ((Math.abs(mapCoordinates.latS) - 1) / 5) | 0;
|
||||
const latModS = mapCoordinates.latT > 60 ? d3.mean(latitudeModifier) : latitudeModifier[bandS];
|
||||
const maxPrecS = (southerly / vertT) * 60 * modifier * latModS;
|
||||
passWind(d3.range(cells.i.length - cellsX, cells.i.length, 1), maxPrecS, -cellsX, cellsY);
|
||||
}
|
||||
|
||||
function getWindDirections(tier) {
|
||||
const angle = options.winds[tier];
|
||||
|
||||
const isWest = angle > 40 && angle < 140;
|
||||
const isEast = angle > 220 && angle < 320;
|
||||
const isNorth = angle > 100 && angle < 260;
|
||||
const isSouth = angle > 280 || angle < 80;
|
||||
|
||||
return {isWest, isEast, isNorth, isSouth};
|
||||
}
|
||||
|
||||
function passWind(source, maxPrec, next, steps) {
|
||||
const maxPrecInit = maxPrec;
|
||||
|
||||
for (let first of source) {
|
||||
if (first[0]) {
|
||||
maxPrec = Math.min(maxPrecInit * first[1], 255);
|
||||
first = first[0];
|
||||
}
|
||||
|
||||
let humidity = maxPrec - cells.h[first]; // initial water amount
|
||||
if (humidity <= 0) continue; // if first cell in row is too elevated consider wind dry
|
||||
|
||||
for (let s = 0, current = first; s < steps; s++, current += next) {
|
||||
if (cells.temp[current] < -5) continue; // no flux in permafrost
|
||||
|
||||
if (cells.h[current] < 20) {
|
||||
// water cell
|
||||
if (cells.h[current + next] >= 20) {
|
||||
precipitation[current + next] += Math.max(humidity / rand(10, 20), 1); // coastal precipitation
|
||||
} else {
|
||||
humidity = Math.min(humidity + 5 * modifier, maxPrec); // wind gets more humidity passing water cell
|
||||
precipitation[current] += 5 * modifier; // water cells precipitation (need to correctly pour water through lakes)
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// land cell
|
||||
const isPassable = cells.h[current + next] <= MAX_PASSABLE_ELEVATION;
|
||||
const cellPrec = isPassable ? getPrecipitation(humidity, current, next) : humidity;
|
||||
precipitation[current] += cellPrec;
|
||||
const evaporation = cellPrec > 1.5 ? 1 : 0; // some humidity evaporates back to the atmosphere
|
||||
humidity = isPassable ? minmax(humidity - cellPrec + evaporation, 0, maxPrec) : 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function getPrecipitation(humidity, i, n) {
|
||||
const normalLoss = Math.max(humidity / (10 * modifier), 1); // precipitation in normal conditions
|
||||
const diff = Math.max(cells.h[i + n] - cells.h[i], 0); // difference in height
|
||||
const mod = (cells.h[i + n] / 70) ** 2; // 50 stands for hills, 70 for mountains
|
||||
return minmax(normalLoss + diff * mod, 1, humidity);
|
||||
}
|
||||
|
||||
void (function drawWindDirection() {
|
||||
const wind = prec.append("g").attr("id", "wind");
|
||||
|
||||
d3.range(0, 6).forEach(function (t) {
|
||||
if (westerly.length > 1) {
|
||||
const west = westerly.filter(w => w[2] === t);
|
||||
if (west && west.length > 3) {
|
||||
const from = west[0][0],
|
||||
to = west[west.length - 1][0];
|
||||
const y = (grid.points[from][1] + grid.points[to][1]) / 2;
|
||||
wind.append("text").attr("x", 20).attr("y", y).text("\u21C9");
|
||||
}
|
||||
}
|
||||
if (easterly.length > 1) {
|
||||
const east = easterly.filter(w => w[2] === t);
|
||||
if (east && east.length > 3) {
|
||||
const from = east[0][0],
|
||||
to = east[east.length - 1][0];
|
||||
const y = (grid.points[from][1] + grid.points[to][1]) / 2;
|
||||
wind
|
||||
.append("text")
|
||||
.attr("x", graphWidth - 52)
|
||||
.attr("y", y)
|
||||
.text("\u21C7");
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
if (northerly)
|
||||
wind
|
||||
.append("text")
|
||||
.attr("x", graphWidth / 2)
|
||||
.attr("y", 42)
|
||||
.text("\u21CA");
|
||||
if (southerly)
|
||||
wind
|
||||
.append("text")
|
||||
.attr("x", graphWidth / 2)
|
||||
.attr("y", graphHeight - 20)
|
||||
.text("\u21C8");
|
||||
})();
|
||||
|
||||
TIME && console.timeEnd("generatePrecipitation");
|
||||
return precipitation;
|
||||
}
|
||||
|
|
@ -118,10 +118,10 @@ window.Submap = (function () {
|
|||
markupGridFeatures();
|
||||
|
||||
// Warning: addLakesInDeepDepressions can be very slow!
|
||||
if (options.addLakesInDepressions) {
|
||||
Lakes.addLakesInDeepDepressions(grid);
|
||||
Lakes.openNearSeaLakes(grid);
|
||||
}
|
||||
// if (options.addLakesInDepressions) {
|
||||
// Lakes.addLakesInDeepDepressions(grid);
|
||||
// Lakes.openNearSeaLakes(grid);
|
||||
// }
|
||||
|
||||
OceanLayers(grid);
|
||||
|
||||
|
|
|
|||
|
|
@ -1,47 +0,0 @@
|
|||
import * as d3 from "d3";
|
||||
|
||||
import {TIME} from "config/logging";
|
||||
import {minmax} from "utils/numberUtils";
|
||||
import {getInputNumber} from "utils/nodeUtils";
|
||||
import {MIN_LAND_HEIGHT} from "config/generation";
|
||||
|
||||
const interpolate = d3.easePolyInOut.exponent(0.5); // interpolation function
|
||||
|
||||
export function calculateTemperatures(grid: IGridWithHeights) {
|
||||
TIME && console.time("calculateTemperatures");
|
||||
|
||||
const {cells, cellsX, points} = grid;
|
||||
const heights = cells.h;
|
||||
|
||||
const temperatures = new Int8Array(heights.length); // temperature array
|
||||
|
||||
// temperature decreases by 6.5 Celsius per kilometer
|
||||
const heightExponent = getInputNumber("heightExponentInput");
|
||||
function decreaseTempFromElevation(height: number) {
|
||||
if (height < MIN_LAND_HEIGHT) return 0;
|
||||
|
||||
const realHeight = Math.pow(height - 18, heightExponent);
|
||||
return (realHeight / 1000) * 6.5;
|
||||
}
|
||||
|
||||
const tEq = getInputNumber("temperatureEquatorInput");
|
||||
const tPole = getInputNumber("temperaturePoleInput");
|
||||
const tDelta = tEq - tPole;
|
||||
|
||||
const {latN, latT} = window.mapCoordinates;
|
||||
|
||||
d3.range(0, heights.length, cellsX).forEach(rowStart => {
|
||||
const y = points[rowStart][1];
|
||||
const lat = Math.abs(latN - (y / graphHeight) * latT); // [0; 90]
|
||||
|
||||
const initTemp = tEq - interpolate(lat / 90) * tDelta;
|
||||
for (let i = rowStart; i < rowStart + cellsX; i++) {
|
||||
const elevationDecrease = decreaseTempFromElevation(heights[i]);
|
||||
temperatures[i] = minmax(initTemp - elevationDecrease, -128, 127);
|
||||
}
|
||||
});
|
||||
|
||||
TIME && console.timeEnd("calculateTemperatures");
|
||||
|
||||
return temperatures;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue