refactor: addLakesInDeepDepressions

This commit is contained in:
max 2022-07-24 15:18:47 +03:00
parent b2f16c4b8f
commit 3c6da6585e
16 changed files with 250 additions and 266 deletions

View file

@ -0,0 +1,309 @@
import * as d3 from "d3";
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
import {TIME} from "config/logging";
import {INT8_MAX} from "config/constants";
import {aleaPRNG} from "scripts/aleaPRNG";
import {getFeatureVertices} from "scripts/connectVertices";
import {createTypedArray, unique} from "utils/arrayUtils";
import {dist2} from "utils/functionUtils";
import {clipPoly} from "utils/lineUtils";
import {rn} from "utils/numberUtils";
const {UNMARKED, LAND_COAST, WATER_COAST, LANDLOCKED, DEEPER_WATER} = DISTANCE_FIELD;
// define features (oceans, lakes, islands)
export function markupGridFeatures(neighbors: IGraphCells["c"], borderCells: IGraphCells["b"], heights: Uint8Array) {
TIME && console.time("markupGridFeatures");
Math.random = aleaPRNG(seed); // get the same result on heightmap edit in Erase mode
const gridCellsNumber = borderCells.length;
const featureIds = new Uint16Array(gridCellsNumber); // starts from 1
const distanceField = new Int8Array(gridCellsNumber);
const features: TGridFeatures = [0];
const queue = [0];
for (let featureId = 1; queue[0] !== -1; featureId++) {
const firstCell = queue[0];
featureIds[firstCell] = featureId;
const land = heights[firstCell] >= MIN_LAND_HEIGHT;
let border = false; // set true if feature touches map edge
while (queue.length) {
const cellId = queue.pop()!;
if (borderCells[cellId]) border = true;
for (const neighborId of neighbors[cellId]) {
const isNeibLand = heights[neighborId] >= MIN_LAND_HEIGHT;
if (land === isNeibLand && featureIds[neighborId] === UNMARKED) {
featureIds[neighborId] = featureId;
queue.push(neighborId);
} else if (land && !isNeibLand) {
distanceField[cellId] = LAND_COAST;
distanceField[neighborId] = WATER_COAST;
}
}
}
const type = land ? "island" : border ? "ocean" : "lake";
features.push({i: featureId, land, border, type});
queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell
}
// markup deep ocean cells
const dfOceanMarked = markup({distanceField, neighbors, start: DEEPER_WATER, increment: -1, limit: -10});
TIME && console.timeEnd("markupGridFeatures");
return {featureIds, distanceField: dfOceanMarked, features};
}
// define features (oceans, lakes, islands) add related details
export function markupPackFeatures(
grid: IGrid,
vertices: IGraphVertices,
cells: Pick<IPack["cells"], "c" | "v" | "b" | "p" | "h">
) {
TIME && console.time("markupPackFeatures");
const gridCellsNumber = grid.cells.h.length;
const packCellsNumber = cells.c.length;
const features: TPackFeatures = [0];
const featureIds = new Uint16Array(packCellsNumber); // ids of features, starts from 1
const distanceField = new Int8Array(packCellsNumber); // distance from coast; 1 = land along coast; -1 = water along coast
const haven = createTypedArray({maxValue: packCellsNumber, length: packCellsNumber}); // haven (opposite water cell)
const harbor = new Uint8Array(packCellsNumber); // harbor (number of adjacent water cells)
const defineHaven = (cellId: number) => {
const waterCells = cells.c[cellId].filter(c => cells.h[c] < MIN_LAND_HEIGHT);
const distances = waterCells.map(c => dist2(cells.p[cellId], cells.p[c]));
const closest = distances.indexOf(Math.min.apply(Math, distances));
haven[cellId] = waterCells[closest];
harbor[cellId] = waterCells.length;
};
const queue = [0];
for (let featureId = 1; queue[0] !== -1; featureId++) {
const firstCell = queue[0];
featureIds[firstCell] = featureId; // assign feature number
const land = cells.h[firstCell] >= MIN_LAND_HEIGHT;
let border = false; // true if feature touches map border
let cellNumber = 1; // count cells in a feature
while (queue.length) {
const cellId = queue.pop()!;
if (cells.b[cellId]) border = true;
for (const neighborId of cells.c[cellId]) {
const isNeibLand = cells.h[neighborId] >= MIN_LAND_HEIGHT;
if (land && !isNeibLand) {
distanceField[cellId] = LAND_COAST;
distanceField[neighborId] = WATER_COAST;
if (!haven[cellId]) defineHaven(cellId);
} else if (land && isNeibLand) {
if (distanceField[neighborId] === UNMARKED && distanceField[cellId] === LAND_COAST)
distanceField[neighborId] = LANDLOCKED;
else if (distanceField[cellId] === UNMARKED && distanceField[neighborId] === LAND_COAST)
distanceField[cellId] = LANDLOCKED;
}
if (!featureIds[neighborId] && land === isNeibLand) {
queue.push(neighborId);
featureIds[neighborId] = featureId;
cellNumber++;
}
}
}
const featureVertices = getFeatureVertices({firstCell, vertices, cells, featureIds, featureId});
const points = clipPoly(featureVertices.map(vertex => vertices.p[vertex]));
const area = d3.polygonArea(points); // feature perimiter area
const feature = addFeature({
vertices,
heights: cells.h,
features,
featureIds,
firstCell,
land,
border,
featureVertices,
featureId,
cellNumber,
gridCellsNumber,
area
});
features.push(feature);
queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell
}
// markup pack land cells
const dfLandMarked = markup({distanceField, neighbors: cells.c, start: LANDLOCKED + 1, increment: 1});
TIME && console.timeEnd("markupPackFeatures");
return {features, featureIds, distanceField: dfLandMarked, haven, harbor};
}
function addFeature({
vertices,
heights,
features,
featureIds,
firstCell,
land,
border,
featureVertices,
featureId,
cellNumber,
gridCellsNumber,
area
}: {
vertices: IGraphVertices;
heights: Uint8Array;
features: TPackFeatures;
featureIds: Uint16Array;
firstCell: number;
land: boolean;
border: boolean;
featureVertices: number[];
featureId: number;
cellNumber: number;
gridCellsNumber: number;
area: number;
}) {
const OCEAN_MIN_SIZE = gridCellsNumber / 25;
const SEA_MIN_SIZE = gridCellsNumber / 1000;
const CONTINENT_MIN_SIZE = gridCellsNumber / 10;
const ISLAND_MIN_SIZE = gridCellsNumber / 1000;
const absArea = Math.abs(rn(area));
if (land) return addIsland();
if (border) return addOcean();
return addLake();
function addIsland() {
const group = defineIslandGroup();
const feature: IPackFeatureIsland = {
i: featureId,
type: "island",
group,
land: true,
border,
cells: cellNumber,
firstCell,
vertices: featureVertices,
area: absArea
};
return feature;
}
function addOcean() {
const group = defineOceanGroup();
const feature: IPackFeatureOcean = {
i: featureId,
type: "ocean",
group,
land: false,
border: false,
cells: cellNumber,
firstCell,
vertices: featureVertices,
area: absArea
};
return feature;
}
function addLake() {
const group = "freshwater"; // temp, to be defined later
const name = ""; // temp, to be defined later
// ensure lake ring is clockwise (to form a hole)
const lakeVertices = area > 0 ? featureVertices.reverse() : featureVertices;
const shoreline = getShoreline(); // land cells around lake
const height = getLakeElevation();
function getShoreline() {
const isLand = (cellId: number) => heights[cellId] >= MIN_LAND_HEIGHT;
const cellsAround = lakeVertices.map(vertex => vertices.c[vertex].filter(isLand)).flat();
return unique(cellsAround);
}
function getLakeElevation() {
const MIN_ELEVATION_DELTA = 0.1;
const minShoreHeight = d3.min(shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT;
return rn(minShoreHeight - MIN_ELEVATION_DELTA, 2);
}
const feature: IPackFeatureLake = {
i: featureId,
type: "lake",
group,
name,
land: false,
border: false,
cells: cellNumber,
firstCell,
vertices: lakeVertices,
shoreline: shoreline,
height,
area: absArea
};
return feature;
}
function defineOceanGroup() {
if (cellNumber > OCEAN_MIN_SIZE) return "ocean";
if (cellNumber > SEA_MIN_SIZE) return "sea";
return "gulf";
}
function defineIslandGroup() {
const prevFeature = features[featureIds[firstCell - 1]];
if (prevFeature && prevFeature.type === "lake") return "lake_island";
if (cellNumber > CONTINENT_MIN_SIZE) return "continent";
if (cellNumber > ISLAND_MIN_SIZE) return "island";
return "isle";
}
}
// calculate distance to coast for every cell
function markup({
distanceField,
neighbors,
start,
increment,
limit = INT8_MAX
}: {
distanceField: Int8Array;
neighbors: number[][];
start: number;
increment: number;
limit?: number;
}) {
for (let distance = start, marked = Infinity; marked > 0 && distance > limit; distance += increment) {
marked = 0;
const prevDistance = distance - increment;
for (let cellId = 0; cellId < neighbors.length; cellId++) {
if (distanceField[cellId] !== prevDistance) continue;
for (const neighborId of neighbors[cellId]) {
if (distanceField[neighborId] !== UNMARKED) continue;
distanceField[neighborId] = distance;
marked++;
}
}
}
return distanceField;
}