refactor: draw coastline

This commit is contained in:
max 2022-07-16 15:14:13 +03:00
parent 1888b04d54
commit 4833a8ab35
8 changed files with 422 additions and 371 deletions

View file

@ -1,14 +1,11 @@
import * as d3 from "d3";
import {MIN_LAND_HEIGHT, DISTANCE_FIELD} from "config/generation";
import {ERROR, TIME} from "config/logging";
import {TIME} from "config/logging";
import {INT8_MAX} from "constants";
// @ts-expect-error js module
import {aleaPRNG} from "scripts/aleaPRNG";
import {createTypedArray} from "utils/arrayUtils";
import {dist2, pick} from "utils/functionUtils";
import {getColors} from "utils/colorUtils";
import {clipPoly} from "utils/lineUtils";
import {dist2} from "utils/functionUtils";
import {getFeatureVertices} from "scripts/connectVertices";
const {UNMARKED, LAND_COAST, WATER_COAST, LANDLOCKED, DEEPER_WATER} = DISTANCE_FIELD;
@ -81,8 +78,8 @@ export function markupPackFeatures(
) {
TIME && console.time("markupPackFeatures");
const packCellsNumber = cells.h.length;
const gridCellsNumber = grid.cells.h.length;
const packCellsNumber = cells.c.length;
const features: TPackFeatures = [0];
const featureIds = new Uint16Array(packCellsNumber); // ids of features, starts from 1
@ -99,73 +96,6 @@ export function markupPackFeatures(
harbor[cellId] = waterCells.length;
};
const OCEAN_MIN_SIZE = gridCellsNumber / 25;
const SEA_MIN_SIZE = gridCellsNumber / 1000;
const CONTINENT_MIN_SIZE = gridCellsNumber / 10;
const ISLAND_MIN_SIZE = gridCellsNumber / 1000;
function defineOceanGroup(cellsNumber: number) {
if (cellsNumber > OCEAN_MIN_SIZE) return "ocean";
if (cellsNumber > SEA_MIN_SIZE) return "sea";
return "gulf";
}
function defineIslandGroup(firstCell: number, cellsNumber: number) {
const prevCellFeature = features[featureIds[firstCell - 1]];
if (prevCellFeature && prevCellFeature.type === "lake") return "lake_island";
if (cellsNumber > CONTINENT_MIN_SIZE) return "continent";
if (cellsNumber > ISLAND_MIN_SIZE) return "island";
return "isle";
}
function addIsland(featureId: number, border: boolean, firstCell: number, cells: number, vertices: number[]) {
const group = defineIslandGroup(firstCell, cells);
const feature: IPackFeatureIsland = {
i: featureId,
type: "island",
group,
land: true,
border,
cells,
firstCell,
vertices
};
features.push(feature);
}
function addOcean(featureId: number, firstCell: number, cells: number, vertices: number[]) {
const group = defineOceanGroup(cells);
const feature: IPackFeatureOcean = {
i: featureId,
type: "ocean",
group,
land: false,
border: false,
cells,
firstCell,
vertices
};
features.push(feature);
}
function addLake(featureId: number, firstCell: number, cells: number, vertices: number[]) {
const group = "freshwater"; // temp, to be defined later
const name = ""; // temp, to be defined later
const feature: IPackFeatureLake = {
i: featureId,
type: "lake",
group,
name,
land: false,
border: false,
cells,
firstCell,
vertices
};
features.push(feature);
}
const queue = [0];
for (let featureId = 1; queue[0] !== -1; featureId++) {
const firstCell = queue[0];
@ -175,8 +105,6 @@ export function markupPackFeatures(
let border = false; // true if feature touches map border
let cellNumber = 1; // count cells in a feature
const featureCells = [firstCell];
while (queue.length) {
const cellId = queue.pop()!;
if (cells.b[cellId]) border = true;
@ -199,59 +127,30 @@ export function markupPackFeatures(
queue.push(neighborId);
featureIds[neighborId] = featureId;
cellNumber++;
featureCells.push(neighborId);
}
}
}
cells.v[firstCell]
.map(v => vertices.p[v])
.forEach(([x, y]) => {
d3.select("#debug").append("circle").attr("cx", x).attr("cy", y).attr("r", 0.2).attr("fill", "yellow");
});
const featureVertices = getFeatureVertices({firstCell, vertices, cells, featureIds, featureId});
const startingCell = findStartingCell({firstCell, featureIds, featureId, vertices, cells, packCellsNumber});
// let points = clipPoly(vchain.map(v => vertices.p[v]));
// const area = d3.polygonArea(points); // area with lakes/islands
// if (area > 0 && features[f].type === "lake") {
// points = points.reverse();
// vchain = vchain.reverse();
// }
const isOuterCell = (cellId: number) => cellId >= packCellsNumber;
const startingVertex = findStartingVertex({
startingCell,
const feature = addFeature({
features,
firstCell,
land,
border,
featureIds,
featureVertices,
featureId,
vertices,
cells,
isOuterCell
cellNumber,
gridCellsNumber
});
if (startingVertex === undefined || startingVertex > vertices.p.length) {
throw new Error("Starting vertex not found");
}
const color = featureId === 1 ? "#2274cc" : getColors(12)[featureId % 12];
const paths: TPoint[][] = featureCells.map(i => cells.v[i].map(v => vertices.p[v]));
d3.select("#cells")
.append("path")
.attr("d", "M" + paths.join("M"))
.attr("fill", color)
.attr("fill-opacity", 0.5)
.attr("stroke", "#333")
.attr("stroke-width", "0.1");
const [x, y] = cells.p[firstCell];
d3.select("#debug").append("circle").attr("cx", x).attr("cy", y).attr("r", 1).attr("fill", "blue");
const [cx, cy] = vertices.p[startingVertex];
d3.select("#debug").append("circle").attr("cx", cx).attr("cy", cy).attr("r", 1.5).attr("fill", "red");
const featureVertices = connectVertices({vertices, startingVertex, featureIds, featureId});
const lineGen = d3.line();
const points = clipPoly(featureVertices.map(v => vertices.p[v]));
const path = lineGen(points)!;
d3.select("#sea_island").attr("stroke", "black").append("path").attr("d", path);
if (land) addIsland(featureId, border, firstCell, cellNumber, []);
else if (border) addOcean(featureId, firstCell, cellNumber, []);
else addLake(featureId, firstCell, cellNumber, []);
features.push(feature);
queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell
}
@ -264,6 +163,97 @@ export function markupPackFeatures(
return {features, featureIds, distanceField: dfLandMarked, haven, harbor};
}
function addFeature({
features,
firstCell,
land,
border,
featureVertices,
featureId,
cellNumber,
gridCellsNumber
}: {
features: TPackFeatures;
firstCell: number;
land: boolean;
border: boolean;
featureVertices: number[];
featureId: number;
cellNumber: number;
gridCellsNumber: number;
}) {
const OCEAN_MIN_SIZE = gridCellsNumber / 25;
const SEA_MIN_SIZE = gridCellsNumber / 1000;
const CONTINENT_MIN_SIZE = gridCellsNumber / 10;
const ISLAND_MIN_SIZE = gridCellsNumber / 1000;
if (land) return addIsland();
if (border) return addOcean();
return addLake();
function addIsland() {
const group = defineIslandGroup();
const feature: IPackFeatureIsland = {
i: featureId,
type: "island",
group,
land: true,
border,
cells: cellNumber,
firstCell,
vertices: featureVertices
};
return feature;
}
function addOcean() {
const group = defineOceanGroup();
const feature: IPackFeatureOcean = {
i: featureId,
type: "ocean",
group,
land: false,
border: false,
cells: cellNumber,
firstCell,
vertices: featureVertices
};
return feature;
}
function addLake() {
const group = "freshwater"; // temp, to be defined later
const name = ""; // temp, to be defined later
const feature: IPackFeatureLake = {
i: featureId,
type: "lake",
group,
name,
land: false,
border: false,
cells: cellNumber,
firstCell,
vertices: featureVertices
};
return feature;
}
function defineOceanGroup() {
if (cellNumber > OCEAN_MIN_SIZE) return "ocean";
if (cellNumber > SEA_MIN_SIZE) return "sea";
return "gulf";
}
function defineIslandGroup() {
const prevFeature = features.at(-1);
if (prevFeature && prevFeature.type === "lake") return "lake_island";
if (cellNumber > CONTINENT_MIN_SIZE) return "continent";
if (cellNumber > ISLAND_MIN_SIZE) return "island";
return "isle";
}
}
// calculate distance to coast for every cell
function markup({
distanceField,
@ -294,111 +284,3 @@ function markup({
return distanceField;
}
function findStartingCell({
firstCell,
featureIds,
featureId,
vertices,
cells,
packCellsNumber
}: {
firstCell: number;
featureIds: Uint16Array;
featureId: number;
vertices: IGraphVertices;
cells: Pick<IPack["cells"], "c" | "v">;
packCellsNumber: number;
}) {
const bordersOtherFeature = cells.c[firstCell].some(neighbor => featureIds[neighbor] !== featureId);
if (bordersOtherFeature) return firstCell;
const neibCells = cells.c[firstCell].sort((a, b) => a - b);
for (const neibCell of neibCells) {
const cellVertices = cells.v[neibCell];
const edgingVertex = cellVertices.findIndex(vertex => vertices.c[vertex].some(cellId => cellId >= packCellsNumber));
if (edgingVertex !== -1) {
const engingCell = cells.c[neibCell];
return engingCell[edgingVertex];
}
}
throw new Error(`Markup: firstCell ${firstCell} of feature ${featureId} has no neighbors of other features`);
}
function findStartingVertex({
startingCell,
border,
featureIds,
featureId,
vertices,
cells,
isOuterCell
}: {
startingCell: number;
border: boolean;
featureIds: Uint16Array;
featureId: number;
vertices: IGraphVertices;
cells: Pick<IPack["cells"], "c" | "v">;
isOuterCell: (cellId: number) => boolean;
}) {
const neibCells = cells.c[startingCell];
const cellVertices = cells.v[startingCell];
if (border) {
const externalVertex = cellVertices.find(vertex => {
const [x, y] = vertices.p[vertex];
if (x < 0 || y < 0) return true;
return vertices.c[vertex].some(isOuterCell);
});
if (externalVertex !== undefined) return externalVertex;
}
const otherFeatureNeibs = neibCells.filter(neibCell => featureIds[neibCell] !== featureId);
if (!otherFeatureNeibs.length) {
throw new Error(`Markup: firstCell ${startingCell} of feature ${featureId} has no neighbors of other features`);
}
const index = neibCells.indexOf(d3.min(otherFeatureNeibs)!);
return cellVertices[index];
}
const CONNECT_VERTICES_MAX_ITERATIONS = 50000;
// connect vertices around feature
function connectVertices({
vertices,
startingVertex,
featureIds,
featureId
}: {
vertices: IGraphVertices;
startingVertex: number;
featureIds: Uint16Array;
featureId: number;
}) {
const ofSameType = (cellId: number) => featureIds[cellId] === featureId;
const chain: number[] = []; // vertices chain to form a path
let next = startingVertex;
for (let i = 0; i === 0 || (next !== startingVertex && i < CONNECT_VERTICES_MAX_ITERATIONS); i++) {
const previous = chain.at(-1);
const current = next;
chain.push(current);
const [c1, c2, c3] = vertices.c[current].map(ofSameType);
const [v1, v2, v3] = vertices.v[current];
if (v1 !== previous && c1 !== c2) next = v1;
else if (v2 !== previous && c2 !== c3) next = v2;
else if (v3 !== previous && c1 !== c3) next = v3;
if (next === current) {
ERROR && console.error("Next vertex is not found");
break;
}
}
return chain;
}