v1.5.32 - resolve conflicts

This commit is contained in:
Azgaar 2021-02-14 19:59:37 +03:00
parent 79584fffac
commit 67ec838160
7 changed files with 465 additions and 361 deletions

32
main.js
View file

@ -545,7 +545,6 @@ function generate() {
reGraph();
drawCoastline();
elevateLakes();
Rivers.generate();
defineBiomes();
@ -626,7 +625,7 @@ function calculateVoronoi(graph, points) {
TIME && console.timeEnd("calculateDelaunay");
TIME && console.time("calculateVoronoi");
const voronoi = Voronoi(delaunay, allPoints, n);
const voronoi = new Voronoi(delaunay, allPoints, n);
graph.cells = voronoi.cells;
graph.cells.i = n < 65535 ? Uint16Array.from(d3.range(n)) : Uint32Array.from(d3.range(n)); // array of indexes
graph.vertices = voronoi.vertices;
@ -1137,22 +1136,6 @@ function reMarkFeatures() {
TIME && console.timeEnd("reMarkFeatures");
}
// temporary elevate some lakes to resolve depressions and flux the water to form an open (exorheic) lake
function elevateLakes() {
if (templateInput.value === "Atoll") return; // no need for Atolls
TIME && console.time('elevateLakes');
const cells = pack.cells, features = pack.features;
const maxCells = cells.i.length / 100; // size limit; let big lakes be closed (endorheic)
cells.i.forEach(i => {
if (cells.h[i] >= 20) return;
if (features[cells.f[i]].group !== "freshwater" || features[cells.f[i]].cells > maxCells) return;
cells.h[i] = 20;
//debug.append("circle").attr("cx", cells.p[i][0]).attr("cy", cells.p[i][1]).attr("r", .5).attr("fill", "blue");
});
TIME && console.timeEnd('elevateLakes');
}
// assign biome id for each cell
function defineBiomes() {
TIME && console.time("defineBiomes");
@ -1160,7 +1143,6 @@ function defineBiomes() {
cells.biome = new Uint8Array(cells.i.length); // biomes array
for (const i of cells.i) {
if (f[cells.f[i]].group === "freshwater") cells.h[i] = 19; // de-elevate lakes; here to save some resources
const t = temp[cells.g[i]]; // cell temperature
const h = cells.h[i]; // cell height
const m = h < 20 ? 0 : calculateMoisture(i); // cell moisture
@ -1718,11 +1700,7 @@ function addZones(number = 1) {
function showStatistics() {
const template = templateInput.value;
const templateRandom = locked("template") ? "" : "(random)";
mapId = Date.now(); // unique map id is it's creation date number
mapHistory.push({seed, width:graphWidth, height:graphHeight, template, created:mapId});
console.log(`
Seed: ${seed}
const stats = ` Seed: ${seed}
Canvas size: ${graphWidth}x${graphHeight}
Template: ${template} ${templateRandom}
Points: ${grid.points.length}
@ -1733,7 +1711,11 @@ function showStatistics() {
Burgs: ${pack.burgs.length-1}
Religions: ${pack.religions.length-1}
Culture set: ${culturesSet.selectedOptions[0].innerText}
Cultures: ${pack.cultures.length-1}`);
Cultures: ${pack.cultures.length-1}`;
mapId = Date.now(); // unique map id is it's creation date number
mapHistory.push({seed, width:graphWidth, height:graphHeight, template, created:mapId});
INFO && console.log(stats);
}
const regenerateMap = debounce(function() {

View file

@ -419,7 +419,7 @@
const hull = getHull(start, s.i, s.cells / 10);
const points = [...hull].map(v => pack.vertices.p[v]);
const delaunay = Delaunator.from(points);
const voronoi = Voronoi(delaunay, points, points.length);
const voronoi = new Voronoi(delaunay, points, points.length);
const chain = connectCenters(voronoi.vertices, s.pole[1]);
const relaxed = chain.map(i => voronoi.vertices.p[i]).filter((p, i) => i%15 === 0 || i+1 === chain.length);
paths.push([s.i, relaxed]);

View file

@ -1,296 +1,376 @@
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.Rivers = factory());
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.Rivers = factory());
}(this, (function () {'use strict';
const generate = function(changeHeights = true) {
TIME && console.time('generateRivers');
Math.random = aleaPRNG(seed);
const cells = pack.cells, p = cells.p, features = pack.features;
const generate = function(changeHeights = true) {
TIME && console.time('generateRivers');
Math.random = aleaPRNG(seed);
const cells = pack.cells, p = cells.p, features = pack.features;
// build distance field in cells from water (cells.t)
void function markupLand() {
const q = t => cells.i.filter(i => cells.t[i] === t);
for (let t = 2, queue = q(t); queue.length; t++, queue = q(t)) {
queue.forEach(i => cells.c[i].forEach(c => {
if (!cells.t[c]) cells.t[c] = t+1;
}));
// build distance field in cells from water (cells.t)
void function markupLand() {
const q = t => cells.i.filter(i => cells.t[i] === t);
for (let t = 2, queue = q(t); queue.length; t++, queue = q(t)) {
queue.forEach(i => cells.c[i].forEach(c => {
if (!cells.t[c]) cells.t[c] = t+1;
}));
}
}()
// height with added t value to make map less depressed
const h = Array.from(cells.h)
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + cells.t[i] / 100)
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + d3.mean(cells.c[i].map(c => cells.t[c])) / 10000);
resolveDepressions(h);
features.forEach(f => {delete f.river; delete f.flux; delete f.inlets});
const riversData = []; // rivers data
cells.fl = new Uint16Array(cells.i.length); // water flux array
cells.r = new Uint16Array(cells.i.length); // rivers array
cells.conf = new Uint8Array(cells.i.length); // confluences array
let riverNext = 1; // first river id is 1, not 0
void function drainWater() {
const land = cells.i.filter(i => h[i] >= 20).sort((a,b) => h[b] - h[a]);
const outlets = new Uint32Array(features.length);
// enumerate lake outlet positions
features.filter(f => f.type === "lake" && (f.group === "freshwater" || f.group === "frozen")).forEach(l => {
let outlet = 0;
if (l.shoreline) {
outlet = l.shoreline[d3.scan(l.shoreline, (a,b) => h[a] - h[b])];
} else { // in case it got missed or deleted
WARN && console.warn('Re-scanning shoreline of a lake');
const shallows = cells.i.filter(j => cells.t[j] === -1 && cells.f[j] === l.i);
let shoreline = [];
shallows.map(w => cells.c[w]).forEach(cList => cList.forEach(s => shoreline.push(s)));
outlet = shoreline[d3.scan(shoreline, (a,b) => h[a] - h[b])];
}
}()
outlets[l.i] = outlet;
delete l.shoreline // cleanup temp data once used
});
// height with added t value to make map less depressed
const h = Array.from(cells.h)
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + cells.t[i] / 100)
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + d3.mean(cells.c[i].map(c => cells.t[c])) / 10000);
resolveDepressions(h);
features.forEach(f => {delete f.river; delete f.flux;});
const riversData = []; // rivers data
cells.fl = new Uint16Array(cells.i.length); // water flux array
cells.r = new Uint16Array(cells.i.length); // rivers array
cells.conf = new Uint8Array(cells.i.length); // confluences array
let riverNext = 1; // first river id is 1, not 0
void function drainWater() {
const land = cells.i.filter(i => h[i] >= 20).sort((a,b) => h[b] - h[a]);
land.forEach(function(i) {
cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation
const x = p[i][0], y = p[i][1];
// near-border cell: pour out of the screen
if (cells.b[i]) {
if (cells.r[i]) {
const to = [];
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
if (min === y) {to[0] = x; to[1] = 0;} else
if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else
if (min === x) {to[0] = 0; to[1] = y;} else
if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;}
riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1]});
}
return;
}
//const min = cells.c[i][d3.scan(cells.c[i], (a, b) => h[a] - h[b])]; // downhill cell
let min = cells.c[i][d3.scan(cells.c[i], (a, b) => h[a] - h[b])]; // downhill cell
// allow only one river can flow through a lake
const cf = features[cells.f[i]]; // current cell feature
if (cf.river && cf.river !== cells.r[i]) {
cells.fl[i] = 0;
}
if (cells.fl[i] < 30) {
if (h[min] >= 20) cells.fl[min] += cells.fl[i];
return; // flux is too small to operate as river
}
// Proclaim a new river
if (!cells.r[i]) {
cells.r[i] = riverNext;
riversData.push({river: riverNext, cell: i, x, y});
riverNext++;
}
if (cells.r[min]) { // downhill cell already has river assigned
if (cells.fl[min] < cells.fl[i]) {
cells.conf[min] = cells.fl[min]; // mark confluence
if (h[min] >= 20) riversData.find(r => r.river === cells.r[min]).parent = cells.r[i]; // min river is a tributary of current river
cells.r[min] = cells.r[i]; // re-assign river if downhill part has less flux
} else {
cells.conf[min] += cells.fl[i]; // mark confluence
if (h[min] >= 20) riversData.find(r => r.river === cells.r[i]).parent = cells.r[min]; // current river is a tributary of min river
}
} else cells.r[min] = cells.r[i]; // assign the river to the downhill cell
const nx = p[min][0], ny = p[min][1];
if (h[min] < 20) {
// pour water to the sea haven
riversData.push({river: cells.r[i], cell: cells.haven[i], x: nx, y: ny});
const flowDown = function(min, mFlux, iFlux, ri, i = 0){
if (cells.r[min]) { // downhill cell already has river assigned
if (mFlux < iFlux) {
cells.conf[min] = cells.fl[min]; // mark confluence
if (h[min] >= 20) riversData.find(r => r.river === cells.r[min]).parent = ri; // min river is a tributary of current river
cells.r[min] = ri; // re-assign river if downhill part has less flux
} else {
const mf = features[cells.f[min]]; // feature of min cell
if (mf.type === "lake") {
if (!mf.river || cells.fl[i] > mf.flux) {
mf.river = cells.r[i]; // pour water to temporaly elevated lake
mf.flux = cells.fl[i]; // entering flux
cells.conf[min] += iFlux; // mark confluence
if (h[min] >= 20) riversData.find(r => r.river === ri).parent = cells.r[min]; // current river is a tributary of min river
}
} else cells.r[min] = ri; // assign the river to the downhill cell
if (h[min] < 20) {
// pour water to the sea haven
const oh = i ? cells.haven[i] : min;
riversData.push({river: ri, cell: oh, x: p[min][0], y: p[min][1]});
const mf = features[cells.f[min]]; // feature of min cell
if (mf.type === "lake") {
if (!mf.river || iFlux > mf.flux) {
mf.river = ri; // pour water to temporaly elevated lake
mf.flux = iFlux; // entering flux
}
mf.totalFlux += iFlux;
if (mf.inlets) {
mf.inlets.push(ri);
} else {
mf.inlets = [ri];
}
}
} else {
cells.fl[min] += iFlux; // propagate flux
riversData.push({river: ri, cell: min, x: p[min][0], y: p[min][1]}); // add next River segment
}
}
land.forEach(function(i) {
cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation
const x = p[i][0], y = p[i][1];
// lake outlets draw from lake
let n = -1, out2 = 0;
while (outlets.includes(i, n+1)) {
n = outlets.indexOf(i, n+1);
const l = features[n];
if ( ! l ) {continue;}
const j = cells.haven[i];
// allow chain lakes to retain identity
if(cells.r[j] !== l.river) {
let touch = false;
for (const c of cells.c[j]){
if (cells.r[c] === l.river) {
touch = true;
break;
}
}
cells.fl[min] += cells.fl[i]; // propagate flux
riversData.push({river: cells.r[i], cell: min, x: nx, y: ny}); // add next River segment
}
});
}()
void function defineRivers() {
pack.rivers = []; // rivers data
const riverPaths = []; // temporary data for all rivers
for (let r = 1; r <= riverNext; r++) {
const riverSegments = riversData.filter(d => d.river === r);
if (riverSegments.length > 2) {
const riverEnhanced = addMeandring(riverSegments);
const width = rn(.8 + Math.random() * .4, 1); // river width modifier
const increment = rn(.8 + Math.random() * .6, 1); // river bed widening modifier
const [path, length] = getPath(riverEnhanced, width, increment);
riverPaths.push([r, path, width, increment]);
const source = riverSegments[0], mouth = riverSegments[riverSegments.length-2];
const parent = source.parent || 0;
pack.rivers.push({i:r, parent, length, source:source.cell, mouth:mouth.cell});
} else {
// remove too short rivers
riverSegments.filter(s => cells.r[s.cell] === r).forEach(s => cells.r[s.cell] = 0);
if (touch) {
cells.r[j] = l.river;
riversData.push({river: l.river, cell: j, x: p[j][0], y: p[j][1]});
} else {
cells.r[j] = riverNext;
riversData.push({river: riverNext, cell: j, x: p[j][0], y: p[j][1]});
riverNext++;
}
}
cells.fl[j] = l.totalFlux; // signpost river size
flowDown(i, cells.fl[i], l.totalFlux, cells.r[j]);
// prevent dropping imediately back into the lake
out2 = cells.c[i].filter(c => (h[c] >= 20 || cells.f[c] !== cells.f[j])).sort((a,b) => h[a] - h[b])[0]; // downhill cell not in the source lake
// assign all to outlet basin
if (l.inlets) l.inlets.forEach(fork => riversData.find(r => r.river === fork).parent = cells.r[j]);
}
const html = riverPaths.map(r =>`<path id="river${r[0]}" d="${r[1]}" data-width="${r[2]}" data-increment="${r[3]}"/>`).join("");
rivers.html(html);
}()
// apply change heights as basic one
if (changeHeights) cells.h = Uint8Array.from(h);
TIME && console.timeEnd('generateRivers');
}
// depression filling algorithm (for a correct water flux modeling)
const resolveDepressions = function(h) {
const cells = pack.cells;
const land = cells.i.filter(i => h[i] >= 20 && h[i] < 100 && !cells.b[i]); // exclude near-border cells
land.sort((a,b) => h[b] - h[a]); // highest cells go first
let depressed = false;
for (let l = 0, depression = Infinity; depression && l < 100; l++) {
depression = 0;
for (const i of land) {
const minHeight = d3.min(cells.c[i].map(c => h[c]));
if (minHeight === 100) continue; // already max height
if (h[i] <= minHeight) {
h[i] = Math.min(minHeight + 1, 100);
depression++;
depressed = true;
// near-border cell: pour out of the screen
if (cells.b[i]) {
if (cells.r[i]) {
const to = [];
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
if (min === y) {to[0] = x; to[1] = 0;} else
if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else
if (min === x) {to[0] = 0; to[1] = y;} else
if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;}
riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1]});
}
return;
}
const min = out2 ? out2 : cells.c[i][d3.scan(cells.c[i], (a, b) => h[a] - h[b])]; // downhill cell
if (cells.fl[i] < 30) {
if (h[min] >= 20) cells.fl[min] += cells.fl[i];
return; // flux is too small to operate as river
}
// Proclaim a new river
if (!cells.r[i]) {
cells.r[i] = riverNext;
riversData.push({river: riverNext, cell: i, x, y});
riverNext++;
}
flowDown(min, cells.fl[min], cells.fl[i], cells.r[i], i);
});
}()
void function defineRivers() {
pack.rivers = []; // rivers data
const riverPaths = []; // temporary data for all rivers
for (let r = 1; r <= riverNext; r++) {
const riverSegments = riversData.filter(d => d.river === r);
if (riverSegments.length > 2) {
const source = riverSegments[0], mouth = riverSegments[riverSegments.length-2];
const riverEnhanced = addMeandring(riverSegments);
let width = rn(.8 + Math.random() * .4, 1); // river width modifier [.2, 10]
let increment = rn(.8 + Math.random() * .6, 1); // river bed widening modifier [.01, 3]
const [path, length] = getPath(riverEnhanced, width, increment, cells.h[source.cell] >= 20 ? .1 : .6);
riverPaths.push([r, path, width, increment]);
const parent = source.parent || 0;
pack.rivers.push({i:r, parent, length, source:source.cell, mouth:mouth.cell});
} else {
// remove too short rivers
riverSegments.filter(s => cells.r[s.cell] === r).forEach(s => cells.r[s.cell] = 0);
}
}
return depressed;
}
// drawRivers
rivers.selectAll("path").remove();
rivers.selectAll("path").data(riverPaths).enter()
.append("path").attr("d", d => d[1]).attr("id", d => "river"+d[0])
.attr("data-width", d => d[2]).attr("data-increment", d => d[3]);
}()
// add more river points on 1/3 and 2/3 of length
const addMeandring = function(segments, rndFactor = 0.3) {
const riverEnhanced = []; // to store enhanced segments
let side = 1; // to control meandring direction
// apply change heights as basic one
if (changeHeights) cells.h = Uint8Array.from(h);
for (let s = 0; s < segments.length; s++) {
const sX = segments[s].x, sY = segments[s].y; // segment start coordinates
const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence
riverEnhanced.push([sX, sY, c]);
TIME && console.timeEnd('generateRivers');
}
if (s+1 === segments.length) break; // do not enhance last segment
const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates
const angle = Math.atan2(eY - sY, eX - sX);
const sin = Math.sin(angle), cos = Math.cos(angle);
const serpentine = 1 / (s + 1) + 0.3;
const meandr = serpentine + Math.random() * rndFactor;
if (P(.5)) side *= -1; // change meandring direction in 50%
const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2;
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
if (dist2 > 64 || (dist2 > 16 && segments.length < 6)) {
const p1x = (sX * 2 + eX) / 3 + side * -sin * meandr;
const p1y = (sY * 2 + eY) / 3 + side * cos * meandr;
if (P(.2)) side *= -1; // change 2nd extra point meandring direction in 20%
const p2x = (sX + eX * 2) / 3 + side * sin * meandr;
const p2y = (sY + eY * 2) / 3 + side * cos * meandr;
riverEnhanced.push([p1x, p1y], [p2x, p2y]);
// if dist is medium or river is small add 1 extra middlepoint
} else if (dist2 > 16 || segments.length < 6) {
const p1x = (sX + eX) / 2 + side * -sin * meandr;
const p1y = (sY + eY) / 2 + side * cos * meandr;
riverEnhanced.push([p1x, p1y]);
// depression filling algorithm (for a correct water flux modeling)
const resolveDepressions = function(h) {
const cells = pack.cells;
const land = cells.i.filter(i => h[i] >= 20 && h[i] < 100 && !cells.b[i]); // exclude near-border cells
const lakes = pack.features.filter(f => f.type === "lake" && (f.group === "freshwater" || f.group === "frozen")); // to keep lakes flat
lakes.forEach(l => {
l.shoreline = [];
l.height = 21;
l.totalFlux = grid.cells.prec[cells.g[l.firstCell]];
});
for (let i of land.filter(i => cells.t[i] === 1)) { // select shoreline cells
cells.c[i].map(c => pack.features[cells.f[c]]).forEach(cf => {
if (lakes.includes(cf) && !cf.shoreline.includes(i)) {
cf.shoreline.push(i);
}
})
}
land.sort((a,b) => h[b] - h[a]); // highest cells go first
let depressed = false;
for (let l = 0, depression = Infinity; depression && l < 100; l++) {
depression = 0;
for (const l of lakes) {
const minHeight = d3.min(l.shoreline.map(s => h[s]));
if (minHeight === 100) continue; // already max height
if (l.height <= minHeight) {
l.height = Math.min(minHeight + 1, 100);
depression++;
depressed = true;
}
}
for (const i of land) {
const minHeight = d3.min(cells.c[i].map(c => cells.t[c] > 0 ? h[c] :
pack.features[cells.f[c]].height || h[c] // NB undefined is falsy (a || b is short for a ? a : b)
));
if (minHeight === 100) continue; // already max height
if (h[i] <= minHeight) {
h[i] = Math.min(minHeight + 1, 100);
depression++;
depressed = true;
}
}
return riverEnhanced;
}
const getPath = function(points, width = 1, increment = 1) {
let offset, extraOffset = .1; // starting river width (to make river source visible)
const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length
const widening = rn((1000 + (riverLength * 30)) * increment);
const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon
const last = points.length - 1;
const factor = riverLength / points.length;
return depressed;
}
// first point
let x = points[0][0], y = points[0][1], c;
let angle = Math.atan2(y - points[1][1], x - points[1][0]);
let sin = Math.sin(angle), cos = Math.cos(angle);
let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset;
riverPointsLeft.push([xLeft, yLeft]);
let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset;
riverPointsRight.unshift([xRight, yRight]);
// add more river points on 1/3 and 2/3 of length
const addMeandring = function(segments, rndFactor = 0.3) {
const riverEnhanced = []; // to store enhanced segments
let side = 1; // to control meandring direction
// middle points
for (let p = 1; p < last; p++) {
x = points[p][0], y = points[p][1], c = points[p][2] || 0;
const xPrev = points[p-1][0], yPrev = points[p - 1][1];
const xNext = points[p+1][0], yNext = points[p + 1][1];
angle = Math.atan2(yPrev - yNext, xPrev - xNext);
sin = Math.sin(angle), cos = Math.cos(angle);
offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * width) + extraOffset;
const confOffset = Math.atan(c * 5 / widening);
extraOffset += confOffset;
xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset);
riverPointsLeft.push([xLeft, yLeft]);
xRight = x + sin * offset, yRight = y + -cos * offset;
riverPointsRight.unshift([xRight, yRight]);
for (let s = 0; s < segments.length; s++) {
const sX = segments[s].x, sY = segments[s].y; // segment start coordinates
const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence
riverEnhanced.push([sX, sY, c]);
if (s+1 === segments.length) break; // do not enhance last segment
const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates
const angle = Math.atan2(eY - sY, eX - sX);
const sin = Math.sin(angle), cos = Math.cos(angle);
const serpentine = 1 / (s + 1) + 0.3;
const meandr = serpentine + Math.random() * rndFactor;
if (P(.5)) side *= -1; // change meandring direction in 50%
const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2;
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
if (dist2 > 64 || (dist2 > 16 && segments.length < 6)) {
const p1x = (sX * 2 + eX) / 3 + side * -sin * meandr;
const p1y = (sY * 2 + eY) / 3 + side * cos * meandr;
if (P(.2)) side *= -1; // change 2nd extra point meandring direction in 20%
const p2x = (sX + eX * 2) / 3 + side * sin * meandr;
const p2y = (sY + eY * 2) / 3 + side * cos * meandr;
riverEnhanced.push([p1x, p1y], [p2x, p2y]);
// if dist is medium or river is small add 1 extra middlepoint
} else if (dist2 > 16 || segments.length < 6) {
const p1x = (sX + eX) / 2 + side * -sin * meandr;
const p1y = (sY + eY) / 2 + side * cos * meandr;
riverEnhanced.push([p1x, p1y]);
}
// end point
x = points[last][0], y = points[last][1], c = points[last][2];
if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence
angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x);
}
return riverEnhanced;
}
const getPath = function(points, width = 1, increment = 1, starting = .1) {
let offset, extraOffset = starting; // starting river width (to make river source visible)
const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length
const widening = rn((1000 + (riverLength * 30)) * increment);
const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon
const last = points.length - 1;
const factor = riverLength / points.length;
// first point
let x = points[0][0], y = points[0][1], c;
let angle = Math.atan2(y - points[1][1], x - points[1][0]);
let sin = Math.sin(angle), cos = Math.cos(angle);
let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset;
riverPointsLeft.push([xLeft, yLeft]);
let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset;
riverPointsRight.unshift([xRight, yRight]);
// middle points
for (let p = 1; p < last; p++) {
x = points[p][0], y = points[p][1], c = points[p][2] || 0;
const xPrev = points[p-1][0], yPrev = points[p - 1][1];
const xNext = points[p+1][0], yNext = points[p + 1][1];
angle = Math.atan2(yPrev - yNext, xPrev - xNext);
sin = Math.sin(angle), cos = Math.cos(angle);
xLeft = x + -sin * offset, yLeft = y + cos * offset;
offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * width) + extraOffset;
const confOffset = Math.atan(c * 5 / widening);
extraOffset += confOffset;
xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset);
riverPointsLeft.push([xLeft, yLeft]);
xRight = x + sin * offset, yRight = y + -cos * offset;
riverPointsRight.unshift([xRight, yRight]);
// generate polygon path and return
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
const right = lineGen(riverPointsRight);
let left = lineGen(riverPointsLeft);
left = left.substring(left.indexOf("C"));
return [round(right + left, 2), rn(riverLength, 2)];
}
const specify = function() {
if (!pack.rivers.length) return;
Math.random = aleaPRNG(seed);
const smallLength = pack.rivers.map(r => r.length||0).sort((a,b) => a-b)[Math.ceil(pack.rivers.length * .15)];
const smallType = {"Creek":9, "River":3, "Brook":3, "Stream":1}; // weighted small river types
// end point
x = points[last][0], y = points[last][1], c = points[last][2];
if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence
angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x);
sin = Math.sin(angle), cos = Math.cos(angle);
xLeft = x + -sin * offset, yLeft = y + cos * offset;
riverPointsLeft.push([xLeft, yLeft]);
xRight = x + sin * offset, yRight = y + -cos * offset;
riverPointsRight.unshift([xRight, yRight]);
for (const r of pack.rivers) {
r.basin = getBasin(r.i, r.parent);
r.name = getName(r.mouth);
//debug.append("circle").attr("cx", pack.cells.p[r.mouth][0]).attr("cy", pack.cells.p[r.mouth][1]).attr("r", 2);
const small = r.length < smallLength;
r.type = r.parent && !(r.i%6) ? small ? "Branch" : "Fork" : small ? rw(smallType) : "River";
}
// generate polygon path and return
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
const right = lineGen(riverPointsRight);
let left = lineGen(riverPointsLeft);
left = left.substring(left.indexOf("C"));
return [round(right + left, 2), rn(riverLength, 2)];
}
const specify = function() {
if (!pack.rivers.length) return;
Math.random = aleaPRNG(seed);
const smallLength = pack.rivers.map(r => r.length||0).sort((a,b) => a-b)[Math.ceil(pack.rivers.length * .15)];
const smallType = {"Creek":9, "River":3, "Brook":3, "Stream":1}; // weighted small river types
for (const r of pack.rivers) {
r.basin = getBasin(r.i, r.parent);
r.name = getName(r.mouth);
//debug.append("circle").attr("cx", pack.cells.p[r.mouth][0]).attr("cy", pack.cells.p[r.mouth][1]).attr("r", 2);
const small = r.length < smallLength;
r.type = r.parent && !(r.i%6) ? small ? "Branch" : "Fork" : small ? rw(smallType) : "River";
}
}
const getName = function(cell) {
return Names.getCulture(pack.cells.culture[cell]);
const getName = function(cell) {
return Names.getCulture(pack.cells.culture[cell]);
}
// remove river and all its tributaries
const remove = function(id) {
const cells = pack.cells;
const riversToRemove = pack.rivers.filter(r => r.i === id || getBasin(r.i, r.parent, id) === id).map(r => r.i);
riversToRemove.forEach(r => rivers.select("#river"+r).remove());
cells.r.forEach((r, i) => {
if (!r || !riversToRemove.includes(r)) return;
cells.r[i] = 0;
cells.fl[i] = grid.cells.prec[cells.g[i]];
cells.conf[i] = 0;
});
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
}
const getBasin = function(r, p, e) {
while (p && r !== p && r !== e) {
const parent = pack.rivers.find(r => r.i === p);
if (!parent) return r;
r = parent.i;
p = parent.parent;
}
return r;
}
// remove river and all its tributaries
const remove = function(id) {
const cells = pack.cells;
const riversToRemove = pack.rivers.filter(r => r.i === id || getBasin(r.i, r.parent, id) === id).map(r => r.i);
riversToRemove.forEach(r => rivers.select("#river"+r).remove());
cells.r.forEach((r, i) => {
if (!r || !riversToRemove.includes(r)) return;
cells.r[i] = 0;
cells.fl[i] = grid.cells.prec[cells.g[i]];
cells.conf[i] = 0;
});
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
}
return {generate, resolveDepressions, addMeandring, getPath, specify, getName, getBasin, remove};
const getBasin = function(r, p, e) {
while (p && r !== p && r !== e) {
const parent = pack.rivers.find(r => r.i === p);
if (!parent) return r;
r = parent.i;
p = parent.parent;
}
return r;
}
return {generate, resolveDepressions, addMeandring, getPath, specify, getName, getBasin, remove};
})));
})));

View file

@ -176,7 +176,6 @@ function editHeightmap() {
reGraph();
drawCoastline();
elevateLakes();
Rivers.generate(change);
if (!change) {
@ -288,10 +287,7 @@ function editHeightmap() {
reGraph();
drawCoastline();
if (changeHeights.checked) {
elevateLakes();
Rivers.generate(changeHeights.checked);
}
if (changeHeights.checked) Rivers.generate(changeHeights.checked);
// assign saved pack data from grid back to pack
const n = pack.cells.i.length;
@ -314,7 +310,6 @@ function editHeightmap() {
for (const i of pack.cells.i) {
const g = pack.cells.g[i];
if (pack.features[pack.cells.f[i]].group === "freshwater") pack.cells.h[i] = 19; // de-elevate lakes
const land = pack.cells.h[i] >= 20;
// check biome

View file

@ -73,12 +73,7 @@ function processFeatureRegeneration(event, button) {
}
function regenerateRivers() {
elevateLakes();
Rivers.generate();
for (const i of pack.cells.i) {
const f = pack.features[pack.cells.f[i]]; // feature
if (f.group === "freshwater") pack.cells.h[i] = 19; // de-elevate lakes
}
Rivers.specify();
if (!layerIsOn("toggleRivers")) toggleRivers();
}

View file

@ -45,7 +45,6 @@ function editWorld() {
updateGlobePosition();
calculateTemperatures();
generatePrecipitation();
elevateLakes();
const heights = new Uint8Array(pack.cells.h);
Rivers.generate();
Rivers.specify();

View file

@ -1,82 +1,135 @@
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.Voronoi = factory());
}(this, (function () { 'use strict';
class Voronoi {
/**
* Creates a Voronoi diagram from the given Delaunator, a list of points, and the number of points. The Voronoi diagram is constructed using (I think) the {@link https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm |Bowyer-Watson Algorithm}
* The {@link https://github.com/mapbox/delaunator/ |Delaunator} library uses {@link https://en.wikipedia.org/wiki/Doubly_connected_edge_list |half-edges} to represent the relationship between points and triangles.
* @param {{triangles: Uint32Array, halfedges: Int32Array}} delaunay A {@link https://github.com/mapbox/delaunator/blob/master/index.js |Delaunator} instance.
* @param {[number, number][]} points A list of coordinates.
* @param {number} pointsN The number of points.
*/
constructor(delaunay, points, pointsN) {
this.delaunay = delaunay;
this.points = points;
this.pointsN = pointsN;
this.cells = { v: [], c: [], b: [] }; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell
this.vertices = { p: [], v: [], c: [] }; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells
var Voronoi = function Voronoi(delaunay, points, pointsN) {
const cells = {v: [], c: [], b: []}; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell
const vertices = {p: [], v: [], c: []}; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells
// Half-edges are the indices into the delaunator outputs:
// delaunay.triangles[e] gives the point ID where the half-edge starts
// delaunay.triangles[e] returns either the opposite half-edge in the adjacent triangle, or -1 if there's not an adjacent triangle.
for (let e = 0; e < this.delaunay.triangles.length; e++) {
for (let e=0; e < delaunay.triangles.length; e++) {
const p = delaunay.triangles[nextHalfedge(e)];
if (p < pointsN && !cells.c[p]) {
const edges = edgesAroundPoint(e);
cells.v[p] = edges.map(e => triangleOfEdge(e)); // cell: adjacent vertex
cells.c[p] = edges.map(e => delaunay.triangles[e]).filter(c => c < pointsN); // cell: adjacent valid cells
cells.b[p] = edges.length > cells.c[p].length ? 1 : 0; // cell: is border
const p = this.delaunay.triangles[this.nextHalfedge(e)];
if (p < this.pointsN && !this.cells.c[p]) {
const edges = this.edgesAroundPoint(e);
this.cells.v[p] = edges.map(e => this.triangleOfEdge(e)); // cell: adjacent vertex
this.cells.c[p] = edges.map(e => this.delaunay.triangles[e]).filter(c => c < this.pointsN); // cell: adjacent valid cells
this.cells.b[p] = edges.length > this.cells.c[p].length ? 1 : 0; // cell: is border
}
const t = triangleOfEdge(e);
if (!vertices.p[t]) {
vertices.p[t] = triangleCenter(t); // vertex: coordinates
vertices.v[t] = trianglesAdjacentToTriangle(t); // vertex: adjacent vertices
vertices.c[t] = pointsOfTriangle(t); // vertex: adjacent cells
const t = this.triangleOfEdge(e);
if (!this.vertices.p[t]) {
this.vertices.p[t] = this.triangleCenter(t); // vertex: coordinates
this.vertices.v[t] = this.trianglesAdjacentToTriangle(t); // vertex: adjacent vertices
this.vertices.c[t] = this.pointsOfTriangle(t); // vertex: adjacent cells
}
}
function pointsOfTriangle(t) {
return edgesOfTriangle(t).map(e => delaunay.triangles[e]);
}
function trianglesAdjacentToTriangle(t) {
let triangles = [];
for (let e of edgesOfTriangle(t)) {
let opposite = delaunay.halfedges[e];
triangles.push(triangleOfEdge(opposite));
}
return triangles;
}
function edgesAroundPoint(start) {
let result = [], incoming = start;
do {
result.push(incoming);
const outgoing = nextHalfedge(incoming);
incoming = delaunay.halfedges[outgoing];
} while (incoming !== -1 && incoming !== start && result.length < 20);
return result;
}
function triangleCenter(t) {
let vertices = pointsOfTriangle(t).map(p => points[p]);
return circumcenter(vertices[0], vertices[1], vertices[2]);
}
return {cells, vertices}
}
function edgesOfTriangle(t) {return [3*t, 3*t+1, 3*t+2];}
/**
* Gets the IDs of the points comprising the given triangle. Taken from {@link https://mapbox.github.io/delaunator/#triangle-to-points| the Delaunator docs.}
* @param {number} t The index of the triangle
* @returns {[number, number, number]} The IDs of the points comprising the given triangle.
*/
pointsOfTriangle(t) {
return this.edgesOfTriangle(t).map(edge => this.delaunay.triangles[edge]);
}
function triangleOfEdge(e) {return Math.floor(e/3);}
/**
* Identifies what triangles are adjacent to the given triangle. Taken from {@link https://mapbox.github.io/delaunator/#triangle-to-triangles| the Delaunator docs.}
* @param {number} t The index of the triangle
* @returns {number[]} The indices of the triangles that share half-edges with this triangle.
*/
trianglesAdjacentToTriangle(t) {
let triangles = [];
for (let edge of this.edgesOfTriangle(t)) {
let opposite = this.delaunay.halfedges[edge];
triangles.push(this.triangleOfEdge(opposite));
}
return triangles;
}
function nextHalfedge(e) {return (e % 3 === 2) ? e-2 : e+1;}
/**
* Gets the indices of all the incoming and outgoing half-edges that touch the given point. Taken from {@link https://mapbox.github.io/delaunator/#point-to-edges| the Delaunator docs.}
* @param {number} start The index of an incoming half-edge that leads to the desired point
* @returns {number[]} The indices of all half-edges (incoming or outgoing) that touch the point.
*/
edgesAroundPoint(start) {
const result = [];
let incoming = start;
do {
result.push(incoming);
const outgoing = this.nextHalfedge(incoming);
incoming = this.delaunay.halfedges[outgoing];
} while (incoming !== -1 && incoming !== start && result.length < 20);
return result;
}
function prevHalfedge(e) {return (e % 3 === 0) ? e+2 : e-1;}
/**
* Returns the center of the triangle located at the given index.
* @param {number} t The index of the triangle
* @returns {[number, number]}
*/
triangleCenter(t) {
let vertices = this.pointsOfTriangle(t).map(p => this.points[p]);
return this.circumcenter(vertices[0], vertices[1], vertices[2]);
}
function circumcenter(a, b, c) {
let ad = a[0]*a[0] + a[1]*a[1],
bd = b[0]*b[0] + b[1]*b[1],
cd = c[0]*c[0] + c[1]*c[1];
let D = 2 * (a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1]));
/**
* Retrieves all of the half-edges for a specific triangle `t`. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.}
* @param {number} t The index of the triangle
* @returns {[number, number, number]} The edges of the triangle.
*/
edgesOfTriangle(t) { return [3 * t, 3 * t + 1, 3 * t + 2]; }
/**
* Enables lookup of a triangle, given one of the half-edges of that triangle. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.}
* @param {number} e The index of the edge
* @returns {number} The index of the triangle
*/
triangleOfEdge(e) { return Math.floor(e / 3); }
/**
* Moves to the next half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.}
* @param {number} e The index of the current half edge
* @returns {number} The index of the next half edge
*/
nextHalfedge(e) { return (e % 3 === 2) ? e - 2 : e + 1; }
/**
* Moves to the previous half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.}
* @param {number} e The index of the current half edge
* @returns {number} The index of the previous half edge
*/
prevHalfedge(e) { return (e % 3 === 0) ? e + 2 : e - 1; }
/**
* Finds the circumcenter of the triangle identified by points a, b, and c. Taken from {@link https://en.wikipedia.org/wiki/Circumscribed_circle#Circumcenter_coordinates| Wikipedia}
* @param {[number, number]} a The coordinates of the first point of the triangle
* @param {[number, number]} b The coordinates of the second point of the triangle
* @param {[number, number]} c The coordinates of the third point of the triangle
* @return {[number, number]} The coordinates of the circumcenter of the triangle.
*/
circumcenter(a, b, c) {
const [ax, ay] = a;
const [bx, by] = b;
const [cx, cy] = c;
const ad = ax * ax + ay * ay;
const bd = bx * bx + by * by;
const cd = cx * cx + cy * cy;
const D = 2 * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
return [
Math.floor(1/D * (ad * (b[1] - c[1]) + bd * (c[1] - a[1]) + cd * (a[1] - b[1]))),
Math.floor(1/D * (ad * (c[0] - b[0]) + bd * (a[0] - c[0]) + cd * (b[0] - a[0])))
Math.floor(1 / D * (ad * (by - cy) + bd * (cy - ay) + cd * (ay - by))),
Math.floor(1 / D * (ad * (cx - bx) + bd * (ax - cx) + cd * (bx - ax)))
];
}
return Voronoi;
})));
}