mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 01:41:22 +01:00
v1.3.03a
This commit is contained in:
parent
cba011282d
commit
c8f758ab3c
15 changed files with 397 additions and 135 deletions
|
|
@ -64,43 +64,49 @@
|
|||
const cells = pack.cells, allPorts = pack.burgs.filter(b => b.port > 0 && !b.removed);
|
||||
if (allPorts.length < 2) return [];
|
||||
const bodies = new Set(allPorts.map(b => b.port)); // features with ports
|
||||
let from = [], exit = null, path = [], paths = []; // array to store path segments
|
||||
let paths = []; // array to store path segments
|
||||
|
||||
bodies.forEach(function(f) {
|
||||
const ports = allPorts.filter(b => b.port === f);
|
||||
if (ports.length < 2) return;
|
||||
const first = ports[0].cell;
|
||||
const farthest = ports[d3.scan(ports, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
|
||||
|
||||
// directly connect first port with the farthest one on the same island to remove gap
|
||||
if (pack.features[f].type !== "lake") {
|
||||
void function() {
|
||||
if (pack.features[f].type === "lake") return;
|
||||
const portsOnIsland = ports.filter(b => cells.f[b.cell] === cells.f[first]);
|
||||
if (portsOnIsland.length > 3) {
|
||||
const opposite = ports[d3.scan(portsOnIsland, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
|
||||
//debug.append("circle").attr("r", 1).attr("fill", "blue").attr("cx", pack.cells.p[first][0]).attr("cy", pack.cells.p[first][1])
|
||||
//debug.append("circle").attr("r", 1).attr("fill", "green").attr("cx", pack.cells.p[opposite][0]).attr("cy", pack.cells.p[opposite][1])
|
||||
[from, exit] = findOceanPath(opposite, first);
|
||||
from[first] = cells.haven[first];
|
||||
path = restorePath(opposite, first, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
}
|
||||
}
|
||||
if (portsOnIsland.length < 4) return;
|
||||
const opposite = ports[d3.scan(portsOnIsland, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
|
||||
//debug.append("circle").attr("cx", pack.cells.p[opposite][0]).attr("cy", pack.cells.p[opposite][1]).attr("r", 1);
|
||||
//debug.append("circle").attr("cx", pack.cells.p[first][0]).attr("cy", pack.cells.p[first][1]).attr("fill", "red").attr("r", 1);
|
||||
const [from, exit, passable] = findOceanPath(opposite, first);
|
||||
if (!passable) return;
|
||||
from[first] = cells.haven[first];
|
||||
const path = restorePath(opposite, first, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
}()
|
||||
|
||||
// directly connect first port with the farthest one
|
||||
const farthest = ports[d3.scan(ports, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
|
||||
[from, exit] = findOceanPath(farthest, first);
|
||||
from[first] = cells.haven[first];
|
||||
path = restorePath(farthest, first, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
void function() {
|
||||
const [from, exit, passable] = findOceanPath(farthest, first);
|
||||
if (!passable) return;
|
||||
from[first] = cells.haven[first];
|
||||
const path = restorePath(farthest, first, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
}()
|
||||
|
||||
// indirectly connect first port with all other ports
|
||||
if (ports.length < 3) return;
|
||||
for (const p of ports) {
|
||||
if (p.cell === first || p.cell === farthest) continue;
|
||||
[from, exit] = findOceanPath(p.cell, first, true);
|
||||
//from[exit] = cells.haven[exit];
|
||||
const path = restorePath(p.cell, exit, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
}
|
||||
void function() {
|
||||
if (ports.length < 3) return;
|
||||
for (const p of ports) {
|
||||
if (p.cell === first || p.cell === farthest) continue;
|
||||
const [from, exit, passable] = findOceanPath(p.cell, first, true);
|
||||
if (!passable) continue;
|
||||
const path = restorePath(p.cell, exit, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
}
|
||||
}()
|
||||
|
||||
});
|
||||
|
||||
|
|
@ -173,9 +179,11 @@
|
|||
for (const c of cells.c[n]) {
|
||||
if (cells.h[c] < 20) continue; // ignore water cells
|
||||
const stateChangeCost = cells.state && cells.state[c] !== cells.state[n] ? 400 : 0; // trails tend to lay within the same state
|
||||
const habitedCost = Math.max(100 - biomesData.habitability[cells.biome[c]], 0); // routes tend to lay within populated areas
|
||||
const habitability = biomesData.habitability[cells.biome[c]];
|
||||
const habitedCost = habitability ? Math.max(100 - habitability, 0) : 400; // routes tend to lay within populated areas
|
||||
const heightChangeCost = Math.abs(cells.h[c] - cells.h[n]) * 10; // routes tend to avoid elevation changes
|
||||
const cellCoast = 10 + stateChangeCost + habitedCost + heightChangeCost;
|
||||
const heightCost = cells.h[c] > 80 ? cells.h[c] : 0; // routes tend to avoid mountainous areas
|
||||
const cellCoast = 10 + stateChangeCost + habitedCost + heightChangeCost + heightCost;
|
||||
const totalCost = p + (cells.road[c] || cells.burg[c] ? cellCoast / 3 : cellCoast);
|
||||
|
||||
if (from[c] || totalCost >= cost[c]) continue;
|
||||
|
|
@ -234,22 +242,21 @@
|
|||
|
||||
while (queue.length) {
|
||||
const next = queue.dequeue(), n = next.e, p = next.p;
|
||||
if (toRoute && n !== start && cells.road[n]) return [from, n];
|
||||
if (toRoute && n !== start && cells.road[n]) return [from, n, true];
|
||||
|
||||
for (const c of cells.c[n]) {
|
||||
if (c === exit) {from[c] = n; return [from, exit, true];}
|
||||
if (cells.h[c] >= 20) continue; // ignore land cells
|
||||
const dist2 = (cells.p[c][1] - cells.p[n][1]) ** 2 + (cells.p[c][0] - cells.p[n][0]) ** 2;
|
||||
const totalCost = p + (cells.road[c] ? 1 + dist2 / 2 : dist2 + (cells.t[c] ? 1 : 100));
|
||||
|
||||
if (from[c] || totalCost >= cost[c]) continue;
|
||||
from[c] = n;
|
||||
if (c === exit) return [from, exit];
|
||||
cost[c] = totalCost;
|
||||
from[c] = n, cost[c] = totalCost;
|
||||
queue.queue({e: c, p: totalCost});
|
||||
}
|
||||
|
||||
}
|
||||
return [from, exit];
|
||||
return [from, exit, false];
|
||||
}
|
||||
|
||||
})));
|
||||
Loading…
Add table
Add a link
Reference in a new issue