diff --git a/index.html b/index.html
index b066aeea..a46d059b 100644
--- a/index.html
+++ b/index.html
@@ -7641,7 +7641,7 @@
-
+
diff --git a/src/modules/lakes.ts b/src/modules/lakes.ts
index f884cf03..2f2f69af 100644
--- a/src/modules/lakes.ts
+++ b/src/modules/lakes.ts
@@ -7,34 +7,42 @@ import {aleaPRNG} from "scripts/aleaPRNG";
import {getInputNumber, getInputValue} from "utils/nodeUtils";
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
import {byId} from "utils/shorthands";
+import {getRealHeight} from "utils/unitUtils";
window.Lakes = (function () {
- const setClimateData = function (h: Uint8Array, pack: IPack, grid: IGrid) {
- const cells = pack.cells;
- const lakeOutCells = new Uint16Array(cells.i.length);
+ const setClimateData = function (
+ heights: Uint8Array,
+ lakes: IPackFeatureLake[],
+ gridReference: IPack["cells"]["g"],
+ precipitation: IGrid["cells"]["prec"],
+ temperature: IGrid["cells"]["temp"]
+ ) {
+ const lakeOutCells = new Uint16Array(gridReference.length);
- pack.features.forEach(f => {
- if (f.type !== "lake") return;
+ for (const lake of lakes) {
+ const {firstCell, shoreline} = lake;
// default flux: sum of precipitation around lake
- f.flux = f.shoreline.reduce((acc, c) => acc + grid.cells.prec[cells.g[c]], 0);
+ lake.flux = shoreline.reduce((acc, cellId) => acc + precipitation[gridReference[cellId]], 0);
// temperature and evaporation to detect closed lakes
- f.temp =
- f.cells < 6
- ? grid.cells.temp[cells.g[f.firstCell]]
- : rn(d3.mean(f.shoreline.map(c => grid.cells.temp[cells.g[c]])), 1);
- const height = (f.height - 18) ** heightExponentInput.value; // height in meters
- const evaporation = ((700 * (f.temp + 0.006 * height)) / 50 + 75) / (80 - f.temp); // based on Penman formula, [1-11]
- f.evaporation = rn(evaporation * f.cells);
+ lake.temp =
+ lake.cells < 6
+ ? temperature[gridReference[firstCell]]
+ : rn(d3.mean(shoreline.map(cellId => temperature[gridReference[cellId]]))!, 1);
+
+ const height = getRealHeight(lake.height); // height in meters
+ const evaporation = ((700 * (lake.temp + 0.006 * height)) / 50 + 75) / (80 - lake.temp); // based on Penman formula, [1-11]
+ lake.evaporation = rn(evaporation * lake.cells);
// no outlet for lakes in depressed areas
- if (f.closed) return;
+ // if (lake.closed) continue;
// lake outlet cell
- f.outCell = f.shoreline[d3.scan(f.shoreline, (a, b) => h[a] - h[b])];
- lakeOutCells[f.outCell] = f.i;
- });
+ const outCell = shoreline[d3.scan(shoreline, (a, b) => heights[a] - heights[b])!];
+ lake.outCell = outCell;
+ lakeOutCells[lake.outCell] = lake.i;
+ }
return lakeOutCells;
};
diff --git a/src/modules/river-generator.ts b/src/modules/river-generator.ts
index a71ff2d7..97669393 100644
--- a/src/modules/river-generator.ts
+++ b/src/modules/river-generator.ts
@@ -6,19 +6,22 @@ import {rn} from "utils/numberUtils";
import {round} from "utils/stringUtils";
import {rw, each} from "utils/probabilityUtils";
import {aleaPRNG} from "scripts/aleaPRNG";
-import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
+import {DISTANCE_FIELD, MAX_HEIGHT, MIN_LAND_HEIGHT} from "config/generation";
import {getInputNumber} from "utils/nodeUtils";
+import {pick} from "utils/functionUtils";
+import {byId} from "utils/shorthands";
const {Lakes} = window;
const {LAND_COAST} = DISTANCE_FIELD;
-interface IRiverPackData {
- cells: Pick;
- features: TPackFeatures;
-}
-
window.Rivers = (function () {
- const generate = function (grid: IGrid, {cells, features}: IRiverPackData, allowErosion = true) {
+ const generate = function (
+ precipitation: IGrid["cells"]["prec"],
+ temperature: IGrid["cells"]["temp"],
+ cells: Pick,
+ features: TPackFeatures,
+ allowErosion = true
+ ) {
TIME && console.time("generateRivers");
Math.random = aleaPRNG(seed);
@@ -27,23 +30,26 @@ window.Rivers = (function () {
const riverParents = {};
const cellsNumber = cells.i.length;
- const flux = new Uint16Array(cellsNumber);
const riverIds = new Uint16Array(cellsNumber);
const confluence = new Uint8Array(cellsNumber);
let nextRiverId = 1; // starts with 1
- const alteredHeights = alterHeights({h: cells.h, c: cells.c, t: cells.t});
+ const gradientHeights = alterHeights({h: cells.h, c: cells.c, t: cells.t});
+ const [currentCellHeights, currentLakeHeights] = resolveDepressions(
+ pick(cells, "i", "c", "b", "f"),
+ features,
+ gradientHeights
+ );
- resolveDepressions(pack, alteredHeights);
- drainWater();
+ const flux = drainWater();
defineRivers();
calculateConfluenceFlux();
Lakes.cleanupLakeData(pack);
if (allowErosion) {
- cells.h = Uint8Array.from(alteredHeights); // apply gradient
+ cells.h = Uint8Array.from(currentCellHeights); // mutate heightmap
downcutRivers(); // downcut river beds
}
@@ -51,21 +57,27 @@ window.Rivers = (function () {
function drainWater() {
const MIN_FLUX_TO_FORM_RIVER = 30;
- const cellsNumberModifier = (pointsInput.dataset.cells / 10000) ** 0.25;
+ const points = Number(byId("pointsInput")?.dataset.cells);
+ const cellsNumberModifier = (points / 10000) ** 0.25;
- const prec = grid.cells.prec;
- const land = cells.i.filter(i => alteredHeights[i] >= 20).sort((a, b) => alteredHeights[b] - alteredHeights[a]);
- const lakeOutCells = Lakes.setClimateData(alteredHeights, pack, grid);
+ const land = cells.i.filter(i => currentCellHeights[i] >= MIN_LAND_HEIGHT);
+ land.sort((a, b) => currentCellHeights[b] - currentCellHeights[a]);
- land.forEach(function (i) {
- flux[i] += prec[cells.g[i]] / cellsNumberModifier; // add flux from precipitation
+ const flux = new Uint16Array(cellsNumber);
+
+ const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
+ const lakeOutCells = Lakes.setClimateData(currentCellHeights, lakes, cells.g, precipitation, temperature);
+
+ land.forEach(cellId => {
+ flux[cellId] += precipitation[cells.g[cellId]] / cellsNumberModifier;
// create lake outlet if lake is not in deep depression and flux > evaporation
- const lakes = lakeOutCells[i]
- ? features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation)
+ const openLakes = lakeOutCells[cellId]
+ ? lakes.filter(({outCell, flux = 0, evaporation = 0}) => cellId === outCell && flux > evaporation)
: [];
- for (const lake of lakes) {
- const lakeCell = cells.c[i].find(c => alteredHeights[c] < 20 && cells.f[c] === lake.i);
+
+ for (const lake of openLakes) {
+ const lakeCell = cells.c[cellId].find(c => currentCellHeights[c] < MIN_LAND_HEIGHT && cells.f[c] === lake.i);
flux[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
// allow chain lakes to retain identity
@@ -83,12 +95,12 @@ window.Rivers = (function () {
}
lake.outlet = riverIds[lakeCell];
- flowDown(i, flux[lakeCell], lake.outlet);
+ flowDown(cellId, flux[lakeCell], lake.outlet);
}
// assign all tributary rivers to outlet basin
- const outlet = lakes[0]?.outlet;
- for (const lake of lakes) {
+ const outlet = openLakes[0]?.outlet;
+ for (const lake of openLakes) {
if (!Array.isArray(lake.inlets)) continue;
for (const inlet of lake.inlets) {
riverParents[inlet] = outlet;
@@ -96,21 +108,21 @@ window.Rivers = (function () {
}
// near-border cell: pour water out of the screen
- if (cells.b[i] && riverIds[i]) return addCellToRiver(-1, riverIds[i]);
+ if (cells.b[cellId] && riverIds[cellId]) return addCellToRiver(-1, riverIds[cellId]);
// downhill cell (make sure it's not in the source lake)
let min = null;
- if (lakeOutCells[i]) {
- const filtered = cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c]));
+ if (lakeOutCells[cellId]) {
+ const filtered = cells.c[cellId].filter(c => !openLakes.map(lake => lake.i).includes(cells.f[c]));
min = filtered.sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
- } else if (cells.haven[i]) {
- min = cells.haven[i];
+ } else if (cells.haven[cellId]) {
+ min = cells.haven[cellId];
} else {
- min = cells.c[i].sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
+ min = cells.c[cellId].sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
}
// cells is depressed
- if (alteredHeights[i] <= alteredHeights[min]) return;
+ if (alteredHeights[cellId] <= alteredHeights[min]) return;
// debug
// .append("line")
@@ -121,21 +133,23 @@ window.Rivers = (function () {
// .attr("stroke", "#333")
// .attr("stroke-width", 0.2);
- if (flux[i] < MIN_FLUX_TO_FORM_RIVER) {
+ if (flux[cellId] < MIN_FLUX_TO_FORM_RIVER) {
// flux is too small to operate as a river
- if (alteredHeights[min] >= 20) flux[min] += flux[i];
+ if (alteredHeights[min] >= 20) flux[min] += flux[cellId];
return;
}
// proclaim a new river
- if (!riverIds[i]) {
- riverIds[i] = nextRiverId;
- addCellToRiver(i, nextRiverId);
+ if (!riverIds[cellId]) {
+ riverIds[cellId] = nextRiverId;
+ addCellToRiver(cellId, nextRiverId);
nextRiverId++;
}
- flowDown(min, flux[i], riverIds[i]);
+ flowDown(min, flux[cellId], riverIds[cellId]);
});
+
+ return flux;
}
function addCellToRiver(cellId: number, riverId: number) {
@@ -265,48 +279,122 @@ window.Rivers = (function () {
};
// depression filling algorithm (for a correct water flux modeling)
- const resolveDepressions = function (pack, h) {
- const {cells, features} = pack;
- const maxIterations = getInputNumber("resolveDepressionsStepsOutput");
- const checkLakeMaxIteration = maxIterations * 0.85;
- const elevateLakeMaxIteration = maxIterations * 0.75;
+ const resolveDepressions = function (
+ cells: Pick,
+ features: TPackFeatures,
+ heights: number[]
+ ): [number[], Dict] {
+ const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
+ const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
+ const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
- const height = i => features[cells.f[i]].height || h[i]; // height of lake or specific cell
+ const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
- const lakes = features.filter(feature => feature.type === "lake");
- const canBePoured = () => {
- const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
+ const LAND_ELEVATION_INCREMENT = 0.1;
+ const LAKE_ELEVATION_INCREMENT = 0.2;
- const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
- const lakeData = lakes.map(feature => {
- const minShoreHeight = d3.min(feature.shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT;
- const minHeightCell =
- feature.shoreline.find(cellId => heights[cellId] === minShoreHeight) || feature.shoreline[0];
+ const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
+ lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
- if (ELEVATION_LIMIT === 80) return {...feature, closed: false};
+ const currentCellHeights = Array.from(heights);
+ const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
- // check if lake can be open (not in deep depression)
- let deep = true;
+ const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
+ const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
- const threshold = feature.height + ELEVATION_LIMIT;
- const queue = [minHeightCell];
+ const drainableLakes = checkLakesDrainability();
+
+ const landCells = cells.i.filter(i => heights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
+ landCells.sort((a, b) => heights[a] - heights[b]); // lowest cells go first
+
+ const depressions: number[] = [];
+
+ for (let iteration = 0; iteration && depressions.at(-1) && iteration < MAX_INTERATIONS; iteration++) {
+ let depressionsLeft = 0;
+
+ // elevate potentially drainable lakes
+ if (iteration < checkLakeMaxIteration) {
+ for (const lake of lakes) {
+ if (drainableLakes[lake.i] !== true) continue;
+
+ const minShoreHeight = getMinHeight(lake.shoreline);
+ if (minShoreHeight >= MAX_HEIGHT || lake.height > minShoreHeight) continue;
+
+ if (iteration > elevateLakeMaxIteration) {
+ for (const shoreCellId of lake.shoreline) {
+ // reset heights
+ currentCellHeights[shoreCellId] = heights[shoreCellId];
+ currentLakeHeights[lake.i] = lake.height;
+ }
+
+ drainableLakes[lake.i] = false;
+ continue;
+ }
+
+ currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
+ depressionsLeft++;
+ }
+ }
+
+ for (const cellId of landCells) {
+ const minHeight = getMinHeight(cells.c[cellId]);
+ if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
+
+ currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
+ depressionsLeft++;
+ }
+
+ depressions.push(depressionsLeft);
+
+ // check depression resolving progress
+ if (depressions.length > 5) {
+ const depressionsInitial = depressions.at(0) || 0;
+ const depressiosRecently = depressions.at(-6) || 0;
+
+ const isProgressingOverall = depressionsInitial < depressionsLeft;
+ if (!isProgressingOverall) return [heights, Object.fromEntries(lakes.map(({i, height}) => [i, height]))];
+
+ const isProgressingRecently = depressiosRecently < depressionsLeft;
+ if (!isProgressingRecently) return [currentCellHeights, currentLakeHeights];
+ }
+ }
+
+ // define lakes that potentially can be open (drained into another water body)
+ function checkLakesDrainability() {
+ const canBeDrained: Dict = {}; // all false by default
+ const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
+
+ for (const lake of lakes) {
+ if (drainAllLakes) {
+ canBeDrained[lake.i] = true;
+ continue;
+ }
+
+ canBeDrained[lake.i] = false;
+ const minShoreHeight = getMinHeight(lake.shoreline);
+ const minHeightShoreCell =
+ lake.shoreline.find(cellId => heights[cellId] === minShoreHeight) || lake.shoreline[0];
+
+ const queue = [minHeightShoreCell];
const checked = [];
- checked[minHeightCell] = true;
+ checked[minHeightShoreCell] = true;
+ const breakableHeight = lake.height + ELEVATION_LIMIT;
- // check if elevated lake can potentially pour to another water body
- while (deep && queue.length) {
+ loopCellsAroundLake: while (queue.length) {
const cellId = queue.pop()!;
for (const neibCellId of cells.c[cellId]) {
if (checked[neibCellId]) continue;
- if (heights[neibCellId] >= threshold) continue;
+ if (heights[neibCellId] >= breakableHeight) continue;
if (heights[neibCellId] < MIN_LAND_HEIGHT) {
const waterFeatureMet = features[cells.f[neibCellId]];
+ const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
+ const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
- if ((waterFeatureMet && waterFeatureMet.type === "ocean") || feature.height > waterFeatureMet.height) {
- deep = false;
- break;
+ if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
+ canBeDrained[lake.i] = true;
+ break loopCellsAroundLake;
}
}
@@ -314,58 +402,14 @@ window.Rivers = (function () {
queue.push(neibCellId);
}
}
-
- return {...feature, closed: deep};
- });
- };
-
- const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells
- land.sort((a, b) => h[a] - h[b]); // lowest cells go first
-
- const progress = [];
- let depressions = Infinity;
- let prevDepressions = null;
- for (let iteration = 0; depressions && iteration < maxIterations; iteration++) {
- if (progress.length > 5 && d3.sum(progress) > 0) {
- // bad progress, abort and set heights back
- h = alterHeights(pack.cells);
- depressions = progress[0];
- break;
}
- depressions = 0;
-
- if (iteration < checkLakeMaxIteration) {
- for (const l of lakes) {
- if (l.closed) continue;
- const minHeight = d3.min(l.shoreline.map(s => h[s]));
- if (minHeight >= 100 || l.height > minHeight) continue;
-
- if (iteration > elevateLakeMaxIteration) {
- l.shoreline.forEach(i => (h[i] = cells.h[i]));
- l.height = d3.min(l.shoreline.map(s => h[s])) - 1;
- l.closed = true;
- continue;
- }
-
- depressions++;
- l.height = minHeight + 0.2;
- }
- }
-
- for (const i of land) {
- const minHeight = d3.min(cells.c[i].map(c => height(c)));
- if (minHeight >= 100 || h[i] > minHeight) continue;
-
- depressions++;
- h[i] = minHeight + 0.1;
- }
-
- prevDepressions !== null && progress.push(depressions - prevDepressions);
- prevDepressions = depressions;
+ return canBeDrained;
}
depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`);
+
+ return [currentCellHeights, currentLakeHeights];
};
// add points at 1/3 and 2/3 of a line between adjacents river cells
diff --git a/src/scripts/generation/pack.ts b/src/scripts/generation/pack.ts
index 26d97910..1bde2e60 100644
--- a/src/scripts/generation/pack.ts
+++ b/src/scripts/generation/pack.ts
@@ -24,8 +24,13 @@ export function createPack(grid: IGrid): IPack {
const markup = markupPackFeatures(grid, vertices, pick(cells, "v", "c", "b", "p", "h"));
const {features, featureIds, distanceField, haven, harbor} = markup;
- const riverCells = {...cells, f: featureIds, t: distanceField, haven};
- Rivers.generate(grid, {cells: riverCells, features}, true);
+ Rivers.generate(
+ grid.cells.prec,
+ grid.cells.temp,
+ pick({...cells, f: featureIds, t: distanceField, haven}, "i", "c", "b", "g", "t", "h", "f", "haven"),
+ features,
+ true
+ );
// Lakes.defineGroup(newPack);
// Biomes.define(newPack, grid);
diff --git a/src/types/pack/feature.d.ts b/src/types/pack/feature.d.ts
index 0f29f8ba..43e499dc 100644
--- a/src/types/pack/feature.d.ts
+++ b/src/types/pack/feature.d.ts
@@ -27,6 +27,10 @@ interface IPackFeatureLake extends IPackFeatureBase {
name: string;
shoreline: number[];
height: number;
+ flux?: number;
+ temp?: number;
+ evaporation?: number;
+ outCell?: number;
}
type TPackFeature = IPackFeatureOcean | IPackFeatureIsland | IPackFeatureLake;
diff --git a/src/utils/unitUtils.ts b/src/utils/unitUtils.ts
index 5e539275..0f6d5aca 100644
--- a/src/utils/unitUtils.ts
+++ b/src/utils/unitUtils.ts
@@ -68,6 +68,10 @@ export function convertTemperature(temp: number) {
// Elevation
// ***
+export function getRealHeight(height: number) {
+ return (height - 18) ** getInputNumber("heightExponentInput");
+}
+
// get user-friendly (real-world) height value from coordinates
export function getFriendlyHeight([x, y]: TPoint) {
const packH = pack.cells.h[findCell(x, y)];