refactor: rankCells

This commit is contained in:
Azgaar 2022-07-10 17:48:02 +03:00
parent 3184a29449
commit d1208b12ec
3 changed files with 74 additions and 34 deletions

View file

@ -1,9 +1,13 @@
import * as d3 from "d3"; import * as d3 from "d3";
import {TIME} from "config/logging"; import {TIME} from "config/logging";
import {normalize} from "utils/numberUtils"; import {normalize, rn} from "utils/numberUtils";
import {isWater, isCoastal} from "utils/graphUtils";
// assess cells suitability to calculate population and rand cells for culture center and burgs placement const FLUX_MAX_BONUS = 250;
const SUITABILITY_FACTOR = 5;
// assess cells suitability for population and rank cells for culture centers and burgs placement
export function rankCells() { export function rankCells() {
TIME && console.time("rankCells"); TIME && console.time("rankCells");
const {cells, features} = pack; const {cells, features} = pack;
@ -11,36 +15,66 @@ export function rankCells() {
cells.s = new Int16Array(cells.i.length); // cell suitability array cells.s = new Int16Array(cells.i.length); // cell suitability array
cells.pop = new Float32Array(cells.i.length); // cell population array cells.pop = new Float32Array(cells.i.length); // cell population array
const flMean = d3.median(cells.fl.filter(f => f)) || 0; const meanFlux = d3.median(cells.fl.filter(f => f)) || 0;
const flMax = d3.max(cells.fl) + d3.max(cells.conf); // to normalize flux const maxFlux = (d3.max(cells.fl) || 0) + (d3.max(cells.conf) || 0); // to normalize flux
const areaMean = d3.mean(cells.area); // to adjust population by cell area const meanArea = d3.mean(cells.area) || 0; // to adjust population by cell area
for (const i of cells.i) { for (const cellId of cells.i) {
if (cells.h[i] < 20) continue; // no population in water if (isWater(cellId)) continue; // no population in water
let s = +biomesData.habitability[cells.biome[i]]; // base suitability derived from biome habitability
if (!s) continue; // uninhabitable biomes has 0 suitability
if (flMean) s += normalize(cells.fl[i] + cells.conf[i], flMean, flMax) * 250; // big rivers and confluences are valued
s -= (cells.h[i] - 50) / 5; // low elevation is valued, high is not;
if (cells.t[i] === 1) { const habitabilityBonus = getHabitabilityBonus(cellId); // [0, 100]
if (cells.r[i]) s += 15; // estuary is valued if (!habitabilityBonus) continue; // uninhabitable biomes are excluded
const feature = features[cells.f[cells.haven[i]]];
if (feature.type === "lake") { const riverBonus = getFluxBonus(cellId); // [0, 250]
if (feature.group === "freshwater") s += 30; const elevationBonus = getElevationBonus(cellId); // [-10, 6]
else if (feature.group == "salt") s += 10; const coastBonus = getCoastBonus(cellId); // [-30, 30]
else if (feature.group == "frozen") s += 1; const estuaryBonus = getEstuaryBonus(cellId); // [0, 15]
else if (feature.group == "dry") s -= 5;
else if (feature.group == "sinkhole") s -= 5; const suitability =
else if (feature.group == "lava") s -= 30; (habitabilityBonus + riverBonus + elevationBonus + coastBonus + estuaryBonus) / SUITABILITY_FACTOR; // [-30, 311]
} else {
s += 5; // ocean coast is valued
if (cells.harbor[i] === 1) s += 20; // safe sea harbor is valued
}
}
cells.s[i] = s / 5; // general population rate
// cell rural population is suitability adjusted by cell area // cell rural population is suitability adjusted by cell area
cells.pop[i] = cells.s[i] > 0 ? (cells.s[i] * cells.area[i]) / areaMean : 0; const population = suitability > 0 ? suitability * (cells.area[cellId] / meanArea) : 0;
cells.pop[cellId] = population;
cells.s[cellId] = suitability;
}
function getHabitabilityBonus(cellId: number) {
return biomesData.habitability[cells.biome[cellId]];
}
function getFluxBonus(cellId: number) {
if (!cells.fl[cellId]) return 0;
return normalize(cells.fl[cellId] + cells.conf[cellId], meanFlux, maxFlux) * FLUX_MAX_BONUS;
}
function getElevationBonus(cellId: number) {
return (50 - cells.h[cellId]) / 5;
}
function getCoastBonus(cellId: number) {
if (!isCoastal(cellId)) return 0;
const havenCell = cells.haven[cellId];
const {group} = features[cells.f[havenCell]];
// lake coast
if (group === "freshwater") return 30;
if (group == "salt") return 10;
if (group == "frozen") return 1;
if (group == "dry") return 1;
if (group == "sinkhole") return 3;
if (group == "lava") return -30;
// ocean coast
if (cells.harbor[cellId] === 1) return 25; // safe harbor
return 5; // unsafe harbor
}
// estuary bonus is [0, 15]
function getEstuaryBonus(cellId: number) {
return cells.r[cellId] && isCoastal(cellId) ? 15 : 0;
} }
TIME && console.timeEnd("rankCells"); TIME && console.timeEnd("rankCells");

4
src/types/pack.d.ts vendored
View file

@ -17,6 +17,8 @@ interface IPack {
s: IntArray; s: IntArray;
pop: Float32Array; pop: Float32Array;
fl: UintArray; fl: UintArray;
conf: UintArray;
r: UintArray;
biome: UintArray; biome: UintArray;
area: UintArray; area: UintArray;
state: UintArray; state: UintArray;
@ -24,6 +26,8 @@ interface IPack {
religion: UintArray; religion: UintArray;
province: UintArray; province: UintArray;
burg: UintArray; burg: UintArray;
haven: UintArray;
harbor: UintArray;
q: d3.Quadtree<number[]>; q: d3.Quadtree<number[]>;
}; };
states: IState[]; states: IState[];

View file

@ -160,14 +160,16 @@ export function getGridPolygon(i: number): TPoints {
return grid.cells.v[i].map(v => grid.vertices.p[v]); return grid.cells.v[i].map(v => grid.vertices.p[v]);
} }
// filter land cells export function isLand(cellId: number) {
export function isLand(i: number) { return pack.cells.h[cellId] >= 20;
return pack.cells.h[i] >= 20;
} }
// filter water cells export function isWater(cellId: number) {
export function isWater(i: number) { return pack.cells.h[cellId] < 20;
return pack.cells.h[i] < 20; }
export function isCoastal(i: number) {
return pack.cells.t[i] === 1;
} }
// findAll d3.quandtree search from https://bl.ocks.org/lwthatcher/b41479725e0ff2277c7ac90df2de2b5e // findAll d3.quandtree search from https://bl.ocks.org/lwthatcher/b41479725e0ff2277c7ac90df2de2b5e