refactor: move files to folders

This commit is contained in:
Azgaar 2022-09-05 23:50:50 +03:00
parent 0d1b52e538
commit dd29a89d66
10 changed files with 419 additions and 405 deletions

View file

@ -0,0 +1,106 @@
import FlatQueue from "flatqueue";
import {DISTANCE_FIELD, ELEVATION, FOREST_BIOMES, MIN_LAND_HEIGHT} from "config/generation";
import {TIME} from "config/logging";
import {getInputNumber} from "utils/nodeUtils";
import {minmax} from "utils/numberUtils";
import {isCulture} from "utils/typeUtils";
const {LAND_COAST, LANDLOCKED, WATER_COAST} = DISTANCE_FIELD;
const {MOUNTAINS, HILLS} = ELEVATION;
// expand cultures across the map (Dijkstra-like algorithm)
export function expandCultures(
cultures: TCultures,
features: TPackFeatures,
cells: Pick<IPack["cells"], "c" | "area" | "h" | "t" | "f" | "r" | "fl" | "biome" | "pop">
) {
TIME && console.time("expandCultures");
const cultureIds = new Uint16Array(cells.h.length); // cell cultures
const queue = new FlatQueue<{cellId: number; cultureId: number}>();
cultures.filter(isCulture).forEach(culture => {
queue.push({cellId: culture.center, cultureId: culture.i}, 0);
});
const cellsNumberFactor = cells.h.length / 1.6;
const maxExpansionCost = cellsNumberFactor * getInputNumber("neutralInput"); // limit cost for culture growth
const cost: number[] = [];
while (queue.length) {
const priority = queue.peekValue()!;
const {cellId, cultureId} = queue.pop()!;
const {type, expansionism, center} = getCulture(cultureId);
const cultureBiome = cells.biome[center];
cells.c[cellId].forEach(neibCellId => {
const biomeCost = getBiomeCost(neibCellId, cultureBiome, type);
const heightCost = getHeightCost(neibCellId, cells.h[neibCellId], type);
const riverCost = getRiverCost(cells.r[neibCellId], neibCellId, type);
const typeCost = getTypeCost(cells.t[neibCellId], type);
const totalCost = priority + (biomeCost + heightCost + riverCost + typeCost) / expansionism;
if (totalCost > maxExpansionCost) return;
if (!cost[neibCellId] || totalCost < cost[neibCellId]) {
if (cells.pop[neibCellId] > 0) cultureIds[neibCellId] = cultureId; // assign culture to populated cell
cost[neibCellId] = totalCost;
queue.push({cellId: neibCellId, cultureId}, totalCost);
}
});
}
TIME && console.timeEnd("expandCultures");
return cultureIds;
function getCulture(cultureId: number) {
const culture = cultures[cultureId];
if (!isCulture(culture)) throw new Error("Wilderness cannot expand");
return culture;
}
function getBiomeCost(cellId: number, cultureBiome: number, type: TCultureType) {
const biome = cells.biome[cellId];
if (cultureBiome === biome) return 10; // tiny penalty for native biome
if (type === "Hunting") return biomesData.cost[biome] * 5; // non-native biome penalty for hunters
if (type === "Nomadic" && FOREST_BIOMES.includes(biome)) return biomesData.cost[biome] * 10; // forest biome penalty for nomads
return biomesData.cost[biome] * 2; // general non-native biome penalty
}
function getHeightCost(cellId: number, height: number, type: TCultureType) {
if (height < MIN_LAND_HEIGHT) {
const feature = features[cells.f[cellId]];
const area = cells.area[cellId];
if (type === "Lake" && feature && feature.type === "lake") return 10; // almost lake crossing penalty for Lake cultures
if (type === "Naval") return area * 2; // low sea or lake crossing penalty for Naval cultures
if (type === "Nomadic") return area * 50; // giant sea or lake crossing penalty for Nomads
return area * 6; // general sea or lake crossing penalty
}
if (type === "Highland") {
if (height >= MOUNTAINS) return 0; // no penalty for highlanders on highlands
if (height < HILLS) return 3000; // giant penalty for highlanders on lowlands
return 100; // penalty for highlanders on hills
}
if (height >= MOUNTAINS) return 200; // general mountains crossing penalty
if (height >= HILLS) return 30; // general hills crossing penalty
return 0;
}
function getRiverCost(riverId: number, cellId: number, type: TCultureType) {
if (type === "River") return riverId ? 0 : 100; // penalty for river cultures
if (!riverId) return 0; // no penalty for others if there is no river
return minmax(cells.fl[cellId] / 10, 20, 100); // river penalty from 20 to 100 based on flux
}
function getTypeCost(t: number, type: TCultureType) {
if (t === LAND_COAST) return type === "Naval" || type === "Lake" ? 0 : type === "Nomadic" ? 60 : 20; // penalty for coastline
if (t === LANDLOCKED) return type === "Naval" || type === "Nomadic" ? 30 : 0; // low penalty for land level 2 for Navals and nomads
if (t !== WATER_COAST) return type === "Naval" || type === "Lake" ? 100 : 0; // penalty for mainland for navals
return 0;
}
}

View file

@ -1,24 +1,15 @@
import * as d3 from "d3"; import * as d3 from "d3";
import FlatQueue from "flatqueue";
import {cultureSets, DEFAULT_SORT_STRING, TCultureSetName} from "config/cultureSets"; import {cultureSets, DEFAULT_SORT_STRING, TCultureSetName} from "config/cultureSets";
import { import {DISTANCE_FIELD, ELEVATION, HUNTING_BIOMES, NOMADIC_BIOMES} from "config/generation";
DISTANCE_FIELD,
ELEVATION,
FOREST_BIOMES,
HUNTING_BIOMES,
MIN_LAND_HEIGHT,
NOMADIC_BIOMES
} from "config/generation";
import {ERROR, TIME, WARN} from "config/logging"; import {ERROR, TIME, WARN} from "config/logging";
import {getColors} from "utils/colorUtils"; import {getColors} from "utils/colorUtils";
import {abbreviate} from "utils/languageUtils"; import {abbreviate} from "utils/languageUtils";
import {getInputNumber, getInputValue, getSelectedOption} from "utils/nodeUtils"; import {getInputNumber, getInputValue, getSelectedOption} from "utils/nodeUtils";
import {minmax, rn} from "utils/numberUtils"; import {rn} from "utils/numberUtils";
import {biased, P, rand} from "utils/probabilityUtils"; import {biased, P, rand} from "utils/probabilityUtils";
import {byId} from "utils/shorthands"; import {byId} from "utils/shorthands";
import {defaultNameBases} from "config/namebases"; import {defaultNameBases} from "config/namebases";
import {isCulture} from "utils/typeUtils";
const {COA} = window; const {COA} = window;
@ -33,16 +24,14 @@ const cultureTypeBaseExpansionism: {[key in TCultureType]: number} = {
}; };
const {MOUNTAINS, HILLS} = ELEVATION; const {MOUNTAINS, HILLS} = ELEVATION;
const {LAND_COAST, LANDLOCKED, WATER_COAST} = DISTANCE_FIELD; const {LAND_COAST, LANDLOCKED} = DISTANCE_FIELD;
export const generateCultures = function ( type TCellsData = Pick<
features: TPackFeatures, IPack["cells"],
cells: Pick< "p" | "i" | "g" | "t" | "h" | "haven" | "harbor" | "f" | "r" | "fl" | "s" | "pop" | "biome"
IPack["cells"], >;
"p" | "i" | "g" | "t" | "h" | "haven" | "harbor" | "f" | "r" | "fl" | "s" | "pop" | "biome"
>, export function generateCultures(features: TPackFeatures, cells: TCellsData, temp: Int8Array): TCultures {
temp: Int8Array
): TCultures {
TIME && console.time("generateCultures"); TIME && console.time("generateCultures");
const wildlands: TWilderness = {name: "Wildlands", i: 0, base: 1, origins: [null], shield: "round"}; const wildlands: TWilderness = {name: "Wildlands", i: 0, base: 1, origins: [null], shield: "round"};
@ -272,100 +261,4 @@ export const generateCultures = function (
ERROR && console.error(`Name base ${base} is not available, applying a fallback one`); ERROR && console.error(`Name base ${base} is not available, applying a fallback one`);
return base % nameBases.length; return base % nameBases.length;
} }
}; }
// expand cultures across the map (Dijkstra-like algorithm)
export const expandCultures = function (
cultures: TCultures,
features: TPackFeatures,
cells: Pick<IPack["cells"], "c" | "area" | "h" | "t" | "f" | "r" | "fl" | "biome" | "pop">
) {
TIME && console.time("expandCultures");
const cultureIds = new Uint16Array(cells.h.length); // cell cultures
const queue = new FlatQueue<{cellId: number; cultureId: number}>();
cultures.filter(isCulture).forEach(culture => {
queue.push({cellId: culture.center, cultureId: culture.i}, 0);
});
const cellsNumberFactor = cells.h.length / 1.6;
const maxExpansionCost = cellsNumberFactor * getInputNumber("neutralInput"); // limit cost for culture growth
const cost: number[] = [];
while (queue.length) {
const priority = queue.peekValue()!;
const {cellId, cultureId} = queue.pop()!;
const {type, expansionism, center} = getCulture(cultureId);
const cultureBiome = cells.biome[center];
cells.c[cellId].forEach(neibCellId => {
const biomeCost = getBiomeCost(neibCellId, cultureBiome, type);
const heightCost = getHeightCost(neibCellId, cells.h[neibCellId], type);
const riverCost = getRiverCost(cells.r[neibCellId], neibCellId, type);
const typeCost = getTypeCost(cells.t[neibCellId], type);
const totalCost = priority + (biomeCost + heightCost + riverCost + typeCost) / expansionism;
if (totalCost > maxExpansionCost) return;
if (!cost[neibCellId] || totalCost < cost[neibCellId]) {
if (cells.pop[neibCellId] > 0) cultureIds[neibCellId] = cultureId; // assign culture to populated cell
cost[neibCellId] = totalCost;
queue.push({cellId: neibCellId, cultureId}, totalCost);
}
});
}
TIME && console.timeEnd("expandCultures");
return cultureIds;
function getCulture(cultureId: number) {
const culture = cultures[cultureId];
if (!isCulture(culture)) throw new Error("Wilderness cannot expand");
return culture;
}
function getBiomeCost(cellId: number, cultureBiome: number, type: TCultureType) {
const biome = cells.biome[cellId];
if (cultureBiome === biome) return 10; // tiny penalty for native biome
if (type === "Hunting") return biomesData.cost[biome] * 5; // non-native biome penalty for hunters
if (type === "Nomadic" && FOREST_BIOMES.includes(biome)) return biomesData.cost[biome] * 10; // forest biome penalty for nomads
return biomesData.cost[biome] * 2; // general non-native biome penalty
}
function getHeightCost(cellId: number, height: number, type: TCultureType) {
if (height < MIN_LAND_HEIGHT) {
const feature = features[cells.f[cellId]];
const area = cells.area[cellId];
if (type === "Lake" && feature && feature.type === "lake") return 10; // almost lake crossing penalty for Lake cultures
if (type === "Naval") return area * 2; // low sea or lake crossing penalty for Naval cultures
if (type === "Nomadic") return area * 50; // giant sea or lake crossing penalty for Nomads
return area * 6; // general sea or lake crossing penalty
}
if (type === "Highland") {
if (height >= MOUNTAINS) return 0; // no penalty for highlanders on highlands
if (height < HILLS) return 3000; // giant penalty for highlanders on lowlands
return 100; // penalty for highlanders on hills
}
if (height >= MOUNTAINS) return 200; // general mountains crossing penalty
if (height >= HILLS) return 30; // general hills crossing penalty
return 0;
}
function getRiverCost(riverId: number, cellId: number, type: TCultureType) {
if (type === "River") return riverId ? 0 : 100; // penalty for river cultures
if (!riverId) return 0; // no penalty for others if there is no river
return minmax(cells.fl[cellId] / 10, 20, 100); // river penalty from 20 to 100 based on flux
}
function getTypeCost(t: number, type: TCultureType) {
if (t === LAND_COAST) return type === "Naval" || type === "Lake" ? 0 : type === "Nomadic" ? 60 : 20; // penalty for coastline
if (t === LANDLOCKED) return type === "Naval" || type === "Nomadic" ? 30 : 0; // low penalty for land level 2 for Navals and nomads
if (t !== WATER_COAST) return type === "Naval" || type === "Lake" ? 100 : 0; // penalty for mainland for navals
return 0;
}
};

View file

@ -14,7 +14,7 @@ export interface ILakeClimateData extends IPackFeatureLake {
enteringFlux?: number; enteringFlux?: number;
} }
export const getClimateData = function ( export function getClimateData(
lakes: IPackFeatureLake[], lakes: IPackFeatureLake[],
heights: Float32Array, heights: Float32Array,
drainableLakes: Dict<boolean>, drainableLakes: Dict<boolean>,
@ -44,13 +44,9 @@ export const getClimateData = function (
}); });
return lakeData; return lakeData;
}; }
export const mergeLakeData = function ( export function mergeLakeData(features: TPackFeatures, lakeData: ILakeClimateData[], rivers: Pick<IRiver, "i">[]) {
features: TPackFeatures,
lakeData: ILakeClimateData[],
rivers: Pick<IRiver, "i">[]
) {
const updatedFeatures = features.map(feature => { const updatedFeatures = features.map(feature => {
if (!feature) return 0; if (!feature) return 0;
if (feature.type !== "lake") return feature; if (feature.type !== "lake") return feature;
@ -71,7 +67,7 @@ export const mergeLakeData = function (
}); });
return updatedFeatures as TPackFeatures; return updatedFeatures as TPackFeatures;
}; }
function defineLakeGroup({ function defineLakeGroup({
firstCell, firstCell,

View file

@ -1,21 +1,15 @@
import * as d3 from "d3";
import {UINT16_MAX} from "config/constants";
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
import {TIME} from "config/logging";
import {calculateVoronoi} from "scripts/generation/graph";
import {markupPackFeatures} from "scripts/generation/markup"; import {markupPackFeatures} from "scripts/generation/markup";
import {rankCells} from "scripts/generation/pack/rankCells"; import {rankCells} from "scripts/generation/pack/rankCells";
import {createTypedArray} from "utils/arrayUtils";
import {pick} from "utils/functionUtils"; import {pick} from "utils/functionUtils";
import {rn} from "utils/numberUtils";
import {generateCultures, expandCultures} from "./cultures";
import {generateRivers} from "./rivers";
import {generateBurgsAndStates} from "./burgsAndStates/generateBurgsAndStates"; import {generateBurgsAndStates} from "./burgsAndStates/generateBurgsAndStates";
import {generateRoutes} from "./generateRoutes"; import {expandCultures} from "./cultures/expandCultures";
import {generateCultures} from "./cultures/generateCultures";
import {generateProvinces} from "./provinces/generateProvinces";
import {generateReligions} from "./religions/generateReligions"; import {generateReligions} from "./religions/generateReligions";
import {repackGrid} from "./repackGrid";
import {generateRivers} from "./rivers/generateRivers";
import {generateRoutes} from "./routes/generateRoutes";
const {LAND_COAST, WATER_COAST, DEEPER_WATER} = DISTANCE_FIELD;
const {Biomes} = window; const {Biomes} = window;
export function createPack(grid: IGrid): IPack { export function createPack(grid: IGrid): IPack {
@ -149,13 +143,10 @@ export function createPack(grid: IGrid): IPack {
} }
}); });
const {provinceIds, provinces} = generateProvinces();
// BurgsAndStates.generateProvinces(); // BurgsAndStates.generateProvinces();
// BurgsAndStates.defineBurgFeatures(); // BurgsAndStates.defineBurgFeatures();
// renderLayer("states");
// renderLayer("borders");
// BurgsAndStates.drawStateLabels();
// Rivers.specify(); // Rivers.specify();
// const updatedFeatures = generateLakeNames(); // const updatedFeatures = generateLakeNames();
@ -190,7 +181,7 @@ export function createPack(grid: IGrid): IPack {
state: stateIds, state: stateIds,
route: cellRoutes, route: cellRoutes,
religion: religionIds, religion: religionIds,
province: new Uint16Array(cells.i.length) province: provinceIds
}, },
features: mergedFeatures, features: mergedFeatures,
rivers: rawRivers, // "name" | "basin" | "type" rivers: rawRivers, // "name" | "basin" | "type"
@ -199,77 +190,9 @@ export function createPack(grid: IGrid): IPack {
burgs, burgs,
routes, routes,
religions, religions,
provinces,
events events
}; };
return pack; return pack;
} }
// repack grid cells: discart deep water cells, add land cells along the coast
function repackGrid(grid: IGrid) {
TIME && console.time("repackGrid");
const {cells: gridCells, points, features} = grid;
const newCells: {p: TPoints; g: number[]; h: number[]} = {p: [], g: [], h: []}; // store new data
const spacing2 = grid.spacing ** 2;
for (const i of gridCells.i) {
const height = gridCells.h[i];
const type = gridCells.t[i];
// exclude ocean points far from coast
if (height < MIN_LAND_HEIGHT && type !== WATER_COAST && type !== DEEPER_WATER) continue;
const feature = features[gridCells.f[i]];
const isLake = feature && feature.type === "lake";
// exclude non-coastal lake points
if (type === DEEPER_WATER && (i % 4 === 0 || isLake)) continue;
const [x, y] = points[i];
addNewPoint(i, x, y, height);
// add additional points for cells along coast
if (type === LAND_COAST || type === WATER_COAST) {
if (gridCells.b[i]) continue; // not for near-border cells
gridCells.c[i].forEach(e => {
if (i > e) return;
if (gridCells.t[e] === type) {
const dist2 = (y - points[e][1]) ** 2 + (x - points[e][0]) ** 2;
if (dist2 < spacing2) return; // too close to each other
const x1 = rn((x + points[e][0]) / 2, 1);
const y1 = rn((y + points[e][1]) / 2, 1);
addNewPoint(i, x1, y1, height);
}
});
}
}
function addNewPoint(i: number, x: number, y: number, height: number) {
newCells.p.push([x, y]);
newCells.g.push(i);
newCells.h.push(height);
}
const {cells, vertices} = calculateVoronoi(newCells.p, grid.boundary);
function getCellArea(i: number) {
const polygon = cells.v[i].map(v => vertices.p[v]);
const area = Math.abs(d3.polygonArea(polygon));
return Math.min(area, UINT16_MAX);
}
const pack = {
vertices,
cells: {
...cells,
p: newCells.p,
g: createTypedArray({maxValue: grid.points.length, from: newCells.g}),
q: d3.quadtree(newCells.p.map(([x, y], i) => [x, y, i])) as unknown as Quadtree,
h: new Uint8Array(newCells.h),
area: createTypedArray({maxValue: UINT16_MAX, from: cells.i}).map(getCellArea)
}
};
TIME && console.timeEnd("repackGrid");
return pack;
}

View file

@ -0,0 +1,11 @@
import {TIME} from "config/logging";
export function generateProvinces() {
TIME && console.time("generateProvinces");
const provinceIds = new Uint16Array(1000); // cells.i.length
const provinces = [] as TProvinces;
TIME && console.timeEnd("generateProvinces");
return {provinceIds, provinces};
}

View file

@ -0,0 +1,79 @@
import * as d3 from "d3";
import {UINT16_MAX} from "config/constants";
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
import {TIME} from "config/logging";
import {createTypedArray} from "utils/arrayUtils";
import {rn} from "utils/numberUtils";
import {calculateVoronoi} from "../graph";
const {LAND_COAST, WATER_COAST, DEEPER_WATER} = DISTANCE_FIELD;
// repack grid cells: discart deep water cells, add land cells along the coast
export function repackGrid(grid: IGrid) {
TIME && console.time("repackGrid");
const {cells: gridCells, points, features} = grid;
const newCells: {p: TPoints; g: number[]; h: number[]} = {p: [], g: [], h: []}; // store new data
const spacing2 = grid.spacing ** 2;
for (const i of gridCells.i) {
const height = gridCells.h[i];
const type = gridCells.t[i];
// exclude ocean points far from coast
if (height < MIN_LAND_HEIGHT && type !== WATER_COAST && type !== DEEPER_WATER) continue;
const feature = features[gridCells.f[i]];
const isLake = feature && feature.type === "lake";
// exclude non-coastal lake points
if (type === DEEPER_WATER && (i % 4 === 0 || isLake)) continue;
const [x, y] = points[i];
addNewPoint(i, x, y, height);
// add additional points for cells along coast
if (type === LAND_COAST || type === WATER_COAST) {
if (gridCells.b[i]) continue; // not for near-border cells
gridCells.c[i].forEach(e => {
if (i > e) return;
if (gridCells.t[e] === type) {
const dist2 = (y - points[e][1]) ** 2 + (x - points[e][0]) ** 2;
if (dist2 < spacing2) return; // too close to each other
const x1 = rn((x + points[e][0]) / 2, 1);
const y1 = rn((y + points[e][1]) / 2, 1);
addNewPoint(i, x1, y1, height);
}
});
}
}
function addNewPoint(i: number, x: number, y: number, height: number) {
newCells.p.push([x, y]);
newCells.g.push(i);
newCells.h.push(height);
}
const {cells, vertices} = calculateVoronoi(newCells.p, grid.boundary);
function getCellArea(i: number) {
const polygon = cells.v[i].map(v => vertices.p[v]);
const area = Math.abs(d3.polygonArea(polygon));
return Math.min(area, UINT16_MAX);
}
const pack = {
vertices,
cells: {
...cells,
p: newCells.p,
g: createTypedArray({maxValue: grid.points.length, from: newCells.g}),
q: d3.quadtree(newCells.p.map(([x, y], i) => [x, y, i])) as unknown as Quadtree,
h: new Uint8Array(newCells.h),
area: createTypedArray({maxValue: UINT16_MAX, from: cells.i}).map(getCellArea)
}
};
TIME && console.timeEnd("repackGrid");
return pack;
}

View file

@ -1,13 +1,13 @@
import * as d3 from "d3"; import * as d3 from "d3";
import {INFO, TIME, WARN} from "config/logging"; import {TIME} from "config/logging";
import {rn} from "utils/numberUtils"; import {rn} from "utils/numberUtils";
import {aleaPRNG} from "scripts/aleaPRNG"; import {aleaPRNG} from "scripts/aleaPRNG";
import {DISTANCE_FIELD, MAX_HEIGHT, MIN_LAND_HEIGHT} from "config/generation"; import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
import {getInputNumber} from "utils/nodeUtils";
import {pick} from "utils/functionUtils"; import {pick} from "utils/functionUtils";
import {byId} from "utils/shorthands"; import {byId} from "utils/shorthands";
import {mergeLakeData, getClimateData, ILakeClimateData} from "./lakes"; import {mergeLakeData, getClimateData, ILakeClimateData} from "../lakes/lakes";
import {resolveDepressions} from "./resolveDepressions";
const {Rivers} = window; const {Rivers} = window;
const {LAND_COAST} = DISTANCE_FIELD; const {LAND_COAST} = DISTANCE_FIELD;
@ -276,155 +276,10 @@ export function generateRivers(
} }
// add distance to water value to land cells to make map less depressed // add distance to water value to land cells to make map less depressed
const applyDistanceField = ({h, c, t}: Pick<IPack["cells"], "h" | "c" | "t">) => { function applyDistanceField({h, c, t}: Pick<IPack["cells"], "h" | "c" | "t">) {
return new Float32Array(h.length).map((_, index) => { return new Float32Array(h.length).map((_, index) => {
if (h[index] < MIN_LAND_HEIGHT || t[index] < LAND_COAST) return h[index]; if (h[index] < MIN_LAND_HEIGHT || t[index] < LAND_COAST) return h[index];
const mean = d3.mean(c[index].map(c => t[c])) || 0; const mean = d3.mean(c[index].map(c => t[c])) || 0;
return h[index] + t[index] / 100 + mean / 10000; return h[index] + t[index] / 100 + mean / 10000;
}); });
}; }
// depression filling algorithm (for a correct water flux modeling)
const resolveDepressions = function (
cells: Pick<IPack["cells"], "i" | "c" | "b" | "f">,
features: TPackFeatures,
initialCellHeights: Float32Array
): [Float32Array, Dict<boolean>] {
TIME && console.time("resolveDepressions");
const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
const LAND_ELEVATION_INCREMENT = 0.1;
const LAKE_ELEVATION_INCREMENT = 0.2;
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
const getMinLandHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(i => currentCellHeights[i]));
const landCells = cells.i.filter(i => initialCellHeights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
landCells.sort((a, b) => initialCellHeights[a] - initialCellHeights[b]); // lowest cells go first
const currentCellHeights = Float32Array.from(initialCellHeights);
const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
const currentDrainableLakes = checkLakesDrainability();
const depressions: number[] = [];
let bestDepressions = Infinity;
let bestCellHeights: typeof currentCellHeights | null = null;
let bestDrainableLakes: typeof currentDrainableLakes | null = null;
for (let iteration = 0; depressions.at(-1) !== 0 && iteration < MAX_INTERATIONS; iteration++) {
let depressionsLeft = 0;
// elevate potentially drainable lakes
if (iteration < checkLakeMaxIteration) {
for (const lake of lakes) {
if (currentDrainableLakes[lake.i] !== true) continue;
const minShoreHeight = getMinLandHeight(lake.shoreline);
if (minShoreHeight >= MAX_HEIGHT || currentLakeHeights[lake.i] > minShoreHeight) continue;
if (iteration > elevateLakeMaxIteration) {
// reset heights
for (const shoreCellId of lake.shoreline) {
currentCellHeights[shoreCellId] = initialCellHeights[shoreCellId];
}
currentLakeHeights[lake.i] = lake.height;
currentDrainableLakes[lake.i] = false;
continue;
}
currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
depressionsLeft++;
}
}
for (const cellId of landCells) {
const minHeight = getMinHeight(cells.c[cellId]);
if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
depressionsLeft++;
}
depressions.push(depressionsLeft);
if (depressionsLeft < bestDepressions) {
bestDepressions = depressionsLeft;
bestCellHeights = Float32Array.from(currentCellHeights);
bestDrainableLakes = structuredClone(currentDrainableLakes);
}
}
TIME && console.timeEnd("resolveDepressions");
const depressionsLeft = depressions.at(-1);
if (depressionsLeft) {
if (bestCellHeights && bestDrainableLakes) {
WARN &&
console.warn(`Cannot resolve all depressions. Depressions: ${depressions[0]}. Best result: ${bestDepressions}`);
return [bestCellHeights, bestDrainableLakes];
}
WARN && console.warn(`Cannot resolve depressions. Depressions: ${depressionsLeft}`);
return [initialCellHeights, {}];
}
INFO && console.info(`ⓘ resolved all ${depressions[0]} depressions in ${depressions.length} iterations`);
return [currentCellHeights, currentDrainableLakes];
// define lakes that potentially can be open (drained into another water body)
function checkLakesDrainability() {
const canBeDrained: Dict<boolean> = {}; // all false by default
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
for (const lake of lakes) {
if (drainAllLakes) {
canBeDrained[lake.i] = true;
continue;
}
canBeDrained[lake.i] = false;
const minShoreHeight = getMinHeight(lake.shoreline);
const minHeightShoreCell =
lake.shoreline.find(cellId => initialCellHeights[cellId] === minShoreHeight) || lake.shoreline[0];
const queue = [minHeightShoreCell];
const checked = [];
checked[minHeightShoreCell] = true;
const breakableHeight = lake.height + ELEVATION_LIMIT;
loopCellsAroundLake: while (queue.length) {
const cellId = queue.pop()!;
for (const neibCellId of cells.c[cellId]) {
if (checked[neibCellId]) continue;
if (initialCellHeights[neibCellId] >= breakableHeight) continue;
if (initialCellHeights[neibCellId] < MIN_LAND_HEIGHT) {
const waterFeatureMet = features[cells.f[neibCellId]];
const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
canBeDrained[lake.i] = true;
break loopCellsAroundLake;
}
}
checked[neibCellId] = true;
queue.push(neibCellId);
}
}
}
return canBeDrained;
}
};

View file

@ -0,0 +1,148 @@
import {MIN_LAND_HEIGHT, MAX_HEIGHT} from "config/generation";
import {TIME, WARN, INFO} from "config/logging";
import {getInputNumber} from "utils/nodeUtils";
// depression filling algorithm (for a correct water flux modeling)
export function resolveDepressions(
cells: Pick<IPack["cells"], "i" | "c" | "b" | "f">,
features: TPackFeatures,
initialCellHeights: Float32Array
): [Float32Array, Dict<boolean>] {
TIME && console.time("resolveDepressions");
const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
const LAND_ELEVATION_INCREMENT = 0.1;
const LAKE_ELEVATION_INCREMENT = 0.2;
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
const getMinLandHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(i => currentCellHeights[i]));
const landCells = cells.i.filter(i => initialCellHeights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
landCells.sort((a, b) => initialCellHeights[a] - initialCellHeights[b]); // lowest cells go first
const currentCellHeights = Float32Array.from(initialCellHeights);
const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
const currentDrainableLakes = checkLakesDrainability();
const depressions: number[] = [];
let bestDepressions = Infinity;
let bestCellHeights: typeof currentCellHeights | null = null;
let bestDrainableLakes: typeof currentDrainableLakes | null = null;
for (let iteration = 0; depressions.at(-1) !== 0 && iteration < MAX_INTERATIONS; iteration++) {
let depressionsLeft = 0;
// elevate potentially drainable lakes
if (iteration < checkLakeMaxIteration) {
for (const lake of lakes) {
if (currentDrainableLakes[lake.i] !== true) continue;
const minShoreHeight = getMinLandHeight(lake.shoreline);
if (minShoreHeight >= MAX_HEIGHT || currentLakeHeights[lake.i] > minShoreHeight) continue;
if (iteration > elevateLakeMaxIteration) {
// reset heights
for (const shoreCellId of lake.shoreline) {
currentCellHeights[shoreCellId] = initialCellHeights[shoreCellId];
}
currentLakeHeights[lake.i] = lake.height;
currentDrainableLakes[lake.i] = false;
continue;
}
currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
depressionsLeft++;
}
}
for (const cellId of landCells) {
const minHeight = getMinHeight(cells.c[cellId]);
if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
depressionsLeft++;
}
depressions.push(depressionsLeft);
if (depressionsLeft < bestDepressions) {
bestDepressions = depressionsLeft;
bestCellHeights = Float32Array.from(currentCellHeights);
bestDrainableLakes = structuredClone(currentDrainableLakes);
}
}
TIME && console.timeEnd("resolveDepressions");
const depressionsLeft = depressions.at(-1);
if (depressionsLeft) {
if (bestCellHeights && bestDrainableLakes) {
WARN &&
console.warn(`Cannot resolve all depressions. Depressions: ${depressions[0]}. Best result: ${bestDepressions}`);
return [bestCellHeights, bestDrainableLakes];
}
WARN && console.warn(`Cannot resolve depressions. Depressions: ${depressionsLeft}`);
return [initialCellHeights, {}];
}
INFO && console.info(`ⓘ resolved all ${depressions[0]} depressions in ${depressions.length} iterations`);
return [currentCellHeights, currentDrainableLakes];
// define lakes that potentially can be open (drained into another water body)
function checkLakesDrainability() {
const canBeDrained: Dict<boolean> = {}; // all false by default
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
for (const lake of lakes) {
if (drainAllLakes) {
canBeDrained[lake.i] = true;
continue;
}
canBeDrained[lake.i] = false;
const minShoreHeight = getMinHeight(lake.shoreline);
const minHeightShoreCell =
lake.shoreline.find(cellId => initialCellHeights[cellId] === minShoreHeight) || lake.shoreline[0];
const queue = [minHeightShoreCell];
const checked = [];
checked[minHeightShoreCell] = true;
const breakableHeight = lake.height + ELEVATION_LIMIT;
loopCellsAroundLake: while (queue.length) {
const cellId = queue.pop()!;
for (const neibCellId of cells.c[cellId]) {
if (checked[neibCellId]) continue;
if (initialCellHeights[neibCellId] >= breakableHeight) continue;
if (initialCellHeights[neibCellId] < MIN_LAND_HEIGHT) {
const waterFeatureMet = features[cells.f[neibCellId]];
const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
canBeDrained[lake.i] = true;
break loopCellsAroundLake;
}
}
checked[neibCellId] = true;
queue.push(neibCellId);
}
}
}
return canBeDrained;
}
}

View file

@ -1,10 +1,10 @@
import Delaunator from "delaunator";
import FlatQueue from "flatqueue"; import FlatQueue from "flatqueue";
import {TIME} from "config/logging"; import {TIME} from "config/logging";
import {ELEVATION, MIN_LAND_HEIGHT, ROUTES} from "config/generation"; import {ELEVATION, MIN_LAND_HEIGHT, ROUTES} from "config/generation";
import {dist2} from "utils/functionUtils"; import {dist2} from "utils/functionUtils";
import {isBurg} from "utils/typeUtils"; import {isBurg} from "utils/typeUtils";
import {calculateUrquhartEdges} from "./urquhart";
type TCellsData = Pick<IPack["cells"], "c" | "p" | "g" | "h" | "t" | "biome" | "burg">; type TCellsData = Pick<IPack["cells"], "c" | "p" | "g" | "h" | "t" | "biome" | "burg">;
@ -292,44 +292,3 @@ function getRouteSegments(pathCells: number[], connections: Map<string, boolean>
return segments; return segments;
} }
// Urquhart graph is obtained by removing the longest edge from each triangle in the Delaunay triangulation
// this gives us an aproximation of a desired road network, i.e. connections between burgs
// code from https://observablehq.com/@mbostock/urquhart-graph
function calculateUrquhartEdges(points: TPoints) {
const score = (p0: number, p1: number) => dist2(points[p0], points[p1]);
const {halfedges, triangles} = Delaunator.from(points);
const n = triangles.length;
const removed = new Uint8Array(n);
const edges = [];
for (let e = 0; e < n; e += 3) {
const p0 = triangles[e],
p1 = triangles[e + 1],
p2 = triangles[e + 2];
const p01 = score(p0, p1),
p12 = score(p1, p2),
p20 = score(p2, p0);
removed[
p20 > p01 && p20 > p12
? Math.max(e + 2, halfedges[e + 2])
: p12 > p01 && p12 > p20
? Math.max(e + 1, halfedges[e + 1])
: Math.max(e, halfedges[e])
] = 1;
}
for (let e = 0; e < n; ++e) {
if (e > halfedges[e] && !removed[e]) {
const t0 = triangles[e];
const t1 = triangles[e % 3 === 2 ? e - 2 : e + 1];
edges.push([t0, t1]);
}
}
return edges;
}

View file

@ -0,0 +1,44 @@
import Delaunator from "delaunator";
import {dist2} from "utils/functionUtils";
// Urquhart graph is obtained by removing the longest edge from each triangle in the Delaunay triangulation
// this gives us an aproximation of a desired road network, i.e. connections between burgs
// code from https://observablehq.com/@mbostock/urquhart-graph
export function calculateUrquhartEdges(points: TPoints) {
const score = (p0: number, p1: number) => dist2(points[p0], points[p1]);
const {halfedges, triangles} = Delaunator.from(points);
const n = triangles.length;
const removed = new Uint8Array(n);
const edges = [];
for (let e = 0; e < n; e += 3) {
const p0 = triangles[e],
p1 = triangles[e + 1],
p2 = triangles[e + 2];
const p01 = score(p0, p1),
p12 = score(p1, p2),
p20 = score(p2, p0);
removed[
p20 > p01 && p20 > p12
? Math.max(e + 2, halfedges[e + 2])
: p12 > p01 && p12 > p20
? Math.max(e + 1, halfedges[e + 1])
: Math.max(e, halfedges[e])
] = 1;
}
for (let e = 0; e < n; ++e) {
if (e > halfedges[e] && !removed[e]) {
const t0 = triangles[e];
const t1 = triangles[e % 3 === 2 ? e - 2 : e + 1];
edges.push([t0, t1]);
}
}
return edges;
}