mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 09:41:24 +01:00
Fix population aggregation system to eliminate double-counting
- Fixed core issue where cells.pop and burg.population were both being counted - Changed aggregation logic across all modules to use either burg OR cell population, never both - If cell has burg: count only burg population (represents all people in that area) - If cell has no burg: count only cells.pop (represents scattered population) Files modified: - modules/burgs-and-states.js: Fixed state population aggregation - modules/ui/provinces-editor.js: Fixed province population aggregation - modules/dynamic/editors/cultures-editor.js: Fixed culture population aggregation - modules/dynamic/editors/religions-editor.js: Fixed religion population aggregation - modules/ui/biomes-editor.js: Fixed biome population aggregation - modules/ui/zones-editor.js: Fixed zone population calculations (2 locations) - modules/military-generator.js: Redesigned military generation to use only burg populations Military system changes: - Removed rural military generation (all forces now come from settlements) - Only burgs with 500+ people can maintain military forces - Military strength based on actual burg population (2.5% mobilization rate) Result: Population totals now consistent across all CSV exports (~2M total vs previous 40x discrepancy)
This commit is contained in:
parent
334ef2b58b
commit
e669549390
18 changed files with 2960 additions and 297 deletions
|
|
@ -7,17 +7,23 @@ window.BurgsAndStates = (() => {
|
|||
|
||||
cells.burg = new Uint16Array(n); // cell burg
|
||||
|
||||
const burgs = (pack.burgs = placeCapitals());
|
||||
pack.states = createStates();
|
||||
// Measure performance of each phase
|
||||
const perf = window.PerformanceOptimizer || { measureTime: (name, fn) => fn() };
|
||||
|
||||
const burgs = (pack.burgs = perf.measureTime('burgGeneration', () => placeCapitals()));
|
||||
pack.states = createStates();
|
||||
|
||||
perf.measureTime('burgGeneration', () => {
|
||||
identifyLargePorts();
|
||||
placeRegionalCenters();
|
||||
placeTowns();
|
||||
});
|
||||
|
||||
identifyLargePorts();
|
||||
placeRegionalCenters();
|
||||
placeTowns();
|
||||
expandStates();
|
||||
normalizeStates();
|
||||
getPoles();
|
||||
|
||||
specifyBurgs();
|
||||
perf.measureTime('burgGeneration', () => specifyBurgs());
|
||||
|
||||
collectStatistics();
|
||||
assignColors();
|
||||
|
|
@ -118,24 +124,24 @@ window.BurgsAndStates = (() => {
|
|||
TIME && console.time("identifyLargePorts");
|
||||
const {cells, features} = pack;
|
||||
const temp = grid.cells.temp;
|
||||
|
||||
|
||||
// Track primary population centers (capitals + large ports)
|
||||
pack.primaryCenters = burgs.slice(1).map(b => b.i); // Start with capitals
|
||||
|
||||
|
||||
const potentialPorts = [];
|
||||
|
||||
|
||||
// Find potential large port locations
|
||||
for (const b of burgs) {
|
||||
if (!b.i || b.i === 0) continue; // Skip first element and undefined burgs
|
||||
|
||||
|
||||
const i = b.cell;
|
||||
const haven = cells.haven[i];
|
||||
|
||||
|
||||
if (haven && temp[cells.g[i]] > 0) {
|
||||
const f = cells.f[haven];
|
||||
const waterBodySize = features[f].cells;
|
||||
const harborQuality = cells.harbor[i];
|
||||
|
||||
|
||||
// Large port criteria: large water body and good harbor
|
||||
if (waterBodySize > 10 && harborQuality === 1) {
|
||||
const portScore = waterBodySize * harborQuality + cells.s[i];
|
||||
|
|
@ -143,20 +149,20 @@ window.BurgsAndStates = (() => {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Sort by score and select best ports, ensuring spacing
|
||||
potentialPorts.sort((a, b) => b.score - a.score);
|
||||
const burgsTree = d3.quadtree();
|
||||
|
||||
|
||||
// Add existing capitals to tree
|
||||
for (const b of burgs) {
|
||||
if (b.i && b.capital) {
|
||||
burgsTree.add([b.x, b.y]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const minPortSpacing = (graphWidth + graphHeight) / 8; // Minimum spacing between major ports
|
||||
|
||||
|
||||
for (const portData of potentialPorts) {
|
||||
const b = portData.burg;
|
||||
if (burgsTree.find(b.x, b.y, minPortSpacing) === undefined) {
|
||||
|
|
@ -166,7 +172,7 @@ window.BurgsAndStates = (() => {
|
|||
burgsTree.add([b.x, b.y]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TIME && console.timeEnd("identifyLargePorts");
|
||||
}
|
||||
|
||||
|
|
@ -174,43 +180,43 @@ window.BurgsAndStates = (() => {
|
|||
function placeRegionalCenters() {
|
||||
TIME && console.time("placeRegionalCenters");
|
||||
const {cells} = pack;
|
||||
|
||||
|
||||
if (!pack.primaryCenters || pack.primaryCenters.length < 2) {
|
||||
pack.regionalCenters = [];
|
||||
TIME && console.timeEnd("placeRegionalCenters");
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
pack.regionalCenters = [];
|
||||
const primaryBurgs = pack.primaryCenters.map(id => burgs[id]);
|
||||
|
||||
|
||||
// Calculate target number of regional centers
|
||||
const targetRegionalCenters = Math.max(1, Math.floor(pack.primaryCenters.length * 0.6));
|
||||
|
||||
|
||||
const score = new Int16Array(cells.s.map(s => s * (0.7 + Math.random() * 0.6))); // Regional center score
|
||||
const candidates = cells.i
|
||||
.filter(i => !cells.burg[i] && score[i] > 0 && cells.culture[i])
|
||||
.sort((a, b) => score[b] - score[a]);
|
||||
|
||||
|
||||
const burgsTree = d3.quadtree();
|
||||
|
||||
|
||||
// Add primary centers to tree
|
||||
primaryBurgs.forEach(b => burgsTree.add([b.x, b.y]));
|
||||
|
||||
|
||||
const minPrimaryDistance = (graphWidth + graphHeight) / 12; // Min distance from primary centers
|
||||
const minRegionalSpacing = (graphWidth + graphHeight) / 20; // Min distance between regional centers
|
||||
|
||||
|
||||
let placedRegional = 0;
|
||||
|
||||
|
||||
for (const cell of candidates) {
|
||||
if (placedRegional >= targetRegionalCenters) break;
|
||||
|
||||
|
||||
const [x, y] = cells.p[cell];
|
||||
|
||||
|
||||
// Check distance from primary centers (should be far enough to be useful)
|
||||
const nearestPrimary = burgsTree.find(x, y, minPrimaryDistance);
|
||||
if (nearestPrimary) continue;
|
||||
|
||||
|
||||
// Check distance from other regional centers
|
||||
let tooClose = false;
|
||||
for (const regionalId of pack.regionalCenters) {
|
||||
|
|
@ -222,151 +228,318 @@ window.BurgsAndStates = (() => {
|
|||
}
|
||||
}
|
||||
if (tooClose) continue;
|
||||
|
||||
|
||||
// Create regional center burg
|
||||
const burg = burgs.length;
|
||||
const culture = cells.culture[cell];
|
||||
const name = Names.getCulture(culture);
|
||||
|
||||
|
||||
burgs.push({
|
||||
cell, x, y,
|
||||
state: 0,
|
||||
i: burg,
|
||||
culture,
|
||||
name,
|
||||
capital: 0,
|
||||
cell, x, y,
|
||||
state: 0,
|
||||
i: burg,
|
||||
culture: culture,
|
||||
name,
|
||||
capital: 0,
|
||||
feature: cells.f[cell],
|
||||
isRegionalCenter: true,
|
||||
guaranteedPlaza: true
|
||||
});
|
||||
|
||||
|
||||
cells.burg[cell] = burg;
|
||||
pack.regionalCenters.push(burg);
|
||||
placedRegional++;
|
||||
}
|
||||
|
||||
|
||||
TIME && console.timeEnd("placeRegionalCenters");
|
||||
}
|
||||
|
||||
// place secondary settlements based on hierarchical population distribution
|
||||
function placeTowns() {
|
||||
TIME && console.time("placeTowns");
|
||||
|
||||
// Helper function to calculate distance-based population multiplier
|
||||
const getPopulationMultiplier = (cellId) => {
|
||||
const [x, y] = cells.p[cellId];
|
||||
let minDistanceToPrimary = Infinity;
|
||||
let minDistanceToRegional = Infinity;
|
||||
|
||||
// Find distance to nearest primary center (capital or large port)
|
||||
if (pack.primaryCenters) {
|
||||
for (const primaryId of pack.primaryCenters) {
|
||||
const primary = burgs[primaryId];
|
||||
if (primary) {
|
||||
const distance = Math.sqrt((x - primary.x) ** 2 + (y - primary.y) ** 2);
|
||||
minDistanceToPrimary = Math.min(minDistanceToPrimary, distance);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find distance to nearest regional center
|
||||
if (pack.regionalCenters) {
|
||||
for (const regionalId of pack.regionalCenters) {
|
||||
const regional = burgs[regionalId];
|
||||
if (regional) {
|
||||
const distance = Math.sqrt((x - regional.x) ** 2 + (y - regional.y) ** 2);
|
||||
minDistanceToRegional = Math.min(minDistanceToRegional, distance);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate influence from primary centers (stronger influence)
|
||||
const primaryInfluence = minDistanceToPrimary === Infinity ? 0 :
|
||||
Math.max(0, 1 - (minDistanceToPrimary / ((graphWidth + graphHeight) / 4)));
|
||||
|
||||
// Calculate influence from regional centers (medium influence)
|
||||
const regionalInfluence = minDistanceToRegional === Infinity ? 0 :
|
||||
Math.max(0, 0.6 - (minDistanceToRegional / ((graphWidth + graphHeight) / 6)));
|
||||
|
||||
// Combine influences with primary having more weight
|
||||
const combinedInfluence = Math.max(primaryInfluence * 1.0, regionalInfluence * 0.7);
|
||||
|
||||
// Return multiplier between 0.3 and 1.5
|
||||
return 0.3 + combinedInfluence * 1.2;
|
||||
};
|
||||
|
||||
// Calculate hierarchical score for each cell
|
||||
const baseScore = cells.s.map(s => s * gauss(1, 3, 0, 20, 3));
|
||||
const hierarchicalScore = new Float32Array(cells.i.length);
|
||||
|
||||
for (const i of cells.i) {
|
||||
if (cells.burg[i] || !cells.culture[i] || baseScore[i] <= 0) {
|
||||
hierarchicalScore[i] = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
const populationMultiplier = getPopulationMultiplier(i);
|
||||
hierarchicalScore[i] = baseScore[i] * populationMultiplier;
|
||||
}
|
||||
|
||||
const sorted = cells.i
|
||||
.filter(i => hierarchicalScore[i] > 0)
|
||||
.sort((a, b) => hierarchicalScore[b] - hierarchicalScore[a]);
|
||||
// Place hamlets - smallest settlements (10-50 pop)
|
||||
function placeHamlets() {
|
||||
TIME && console.time("placeHamlets");
|
||||
|
||||
const desiredNumber =
|
||||
manorsInput.value == 100000
|
||||
? rn(sorted.length / 5 / (grid.points.length / 10000) ** 0.8)
|
||||
: manorsInput.valueAsNumber;
|
||||
const burgsNumber = Math.min(desiredNumber, sorted.length);
|
||||
let burgsAdded = 0;
|
||||
const score = new Int16Array(cells.s.map(s => s * gauss(0.8, 1.2, 0, 10, 2)));
|
||||
const candidates = cells.i
|
||||
.filter(i => !cells.burg[i] && score[i] > 0 && cells.culture[i])
|
||||
.sort((a, b) => score[b] - score[a]);
|
||||
|
||||
// Calculate desired number of hamlets (should be ~60% of all settlements)
|
||||
const totalSettlements = manorsInput.value == 100000
|
||||
? rn(candidates.length / 5 / (grid.points.length / 10000) ** 0.8)
|
||||
: manorsInput.valueAsNumber;
|
||||
const hamletCount = Math.floor(totalSettlements * 0.6);
|
||||
|
||||
const burgsTree = burgs[0];
|
||||
let spacing = (graphWidth + graphHeight) / 150 / (burgsNumber ** 0.7 / 66);
|
||||
|
||||
// Add existing burgs to tree for spacing calculations
|
||||
const mapScale = Math.sqrt(graphWidth * graphHeight / 1000000); // Normalize to 1000x1000 map
|
||||
let spacing = 3 * mapScale; // 1-3 km spacing scaled to map size
|
||||
|
||||
let hamletsAdded = 0;
|
||||
|
||||
while (hamletsAdded < hamletCount && spacing > 0.5) {
|
||||
for (let i = 0; hamletsAdded < hamletCount && i < candidates.length; i++) {
|
||||
const cell = candidates[i];
|
||||
const [x, y] = cells.p[cell];
|
||||
|
||||
// Get cultural modifiers
|
||||
const culture = pack.cultures[cells.culture[cell]];
|
||||
let culturalSpacingModifier = 1;
|
||||
|
||||
if (culture && culture.settlementPattern) {
|
||||
// Adjust spacing based on cultural settlement patterns
|
||||
switch(culture.settlementPattern) {
|
||||
case "dispersed": culturalSpacingModifier = 1.5; break; // Nomadic - wider spacing
|
||||
case "scattered": culturalSpacingModifier = 1.3; break; // Hunting - scattered
|
||||
case "coastal": // Naval cultures cluster near coasts
|
||||
if (cells.t[cell] === 1) culturalSpacingModifier = 0.7;
|
||||
else culturalSpacingModifier = 1.2;
|
||||
break;
|
||||
case "linear": // River cultures follow waterways
|
||||
if (cells.r[cell]) culturalSpacingModifier = 0.6;
|
||||
break;
|
||||
case "valley": // Highland cultures in valleys
|
||||
if (cells.h[cell] > 44 && cells.h[cell] < 62) culturalSpacingModifier = 0.7;
|
||||
break;
|
||||
case "lakeside": // Lake cultures near water
|
||||
if (cells.haven[cell]) culturalSpacingModifier = 0.7;
|
||||
break;
|
||||
default: culturalSpacingModifier = 1; // Clustered/Generic
|
||||
}
|
||||
}
|
||||
|
||||
// Biome-based spacing modifier
|
||||
const biome = cells.biome[cell];
|
||||
let biomeModifier = 1;
|
||||
if (biome === 6 || biome === 8) biomeModifier = 0.5; // Fertile regions
|
||||
else if (cells.h[cell] > 50) biomeModifier = 2; // Mountains
|
||||
|
||||
const adjustedSpacing = spacing * biomeModifier * culturalSpacingModifier * gauss(1, 0.2, 0.5, 1.5, 2);
|
||||
|
||||
if (burgsTree.find(x, y, adjustedSpacing) !== undefined) continue;
|
||||
|
||||
const burg = burgs.length;
|
||||
const cultureId = cells.culture[cell];
|
||||
const name = Names.getCulture(cultureId);
|
||||
burgs.push({
|
||||
cell, x, y,
|
||||
state: 0,
|
||||
i: burg,
|
||||
culture: cultureId,
|
||||
name,
|
||||
capital: 0,
|
||||
feature: cells.f[cell],
|
||||
settlementType: "hamlet",
|
||||
basePopulation: gauss(30, 20, 10, 50, 2) // 10-50 population
|
||||
});
|
||||
burgsTree.add([x, y]);
|
||||
cells.burg[cell] = burg;
|
||||
hamletsAdded++;
|
||||
}
|
||||
spacing *= 0.8;
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("placeHamlets");
|
||||
return hamletsAdded;
|
||||
}
|
||||
|
||||
// Place small villages (50-500 pop)
|
||||
function placeSmallVillages() {
|
||||
TIME && console.time("placeSmallVillages");
|
||||
|
||||
const score = new Int16Array(cells.s.map(s => s * gauss(1, 1.5, 0, 15, 2)));
|
||||
const candidates = cells.i
|
||||
.filter(i => !cells.burg[i] && score[i] > 0 && cells.culture[i])
|
||||
.sort((a, b) => score[b] - score[a]);
|
||||
|
||||
// Small villages should be ~20% of settlements
|
||||
const totalSettlements = manorsInput.value == 100000
|
||||
? rn(candidates.length / 5 / (grid.points.length / 10000) ** 0.8)
|
||||
: manorsInput.valueAsNumber;
|
||||
const villageCount = Math.floor(totalSettlements * 0.2);
|
||||
|
||||
const burgsTree = burgs[0];
|
||||
const mapScale = Math.sqrt(graphWidth * graphHeight / 1000000);
|
||||
let spacing = 6 * mapScale; // 3-6 km spacing
|
||||
|
||||
let villagesAdded = 0;
|
||||
|
||||
while (villagesAdded < villageCount && spacing > 1) {
|
||||
for (let i = 0; villagesAdded < villageCount && i < candidates.length; i++) {
|
||||
const cell = candidates[i];
|
||||
const [x, y] = cells.p[cell];
|
||||
|
||||
// Biome and river modifiers
|
||||
const biome = cells.biome[cell];
|
||||
let modifier = 1;
|
||||
if (biome === 6 || biome === 8) modifier = 0.7; // Fertile
|
||||
if (cells.r[cell]) modifier *= 0.8; // Near river
|
||||
if (cells.h[cell] > 50) modifier = 1.5; // Mountains
|
||||
|
||||
const adjustedSpacing = spacing * modifier * gauss(1, 0.25, 0.5, 1.5, 2);
|
||||
|
||||
if (burgsTree.find(x, y, adjustedSpacing) !== undefined) continue;
|
||||
|
||||
const burg = burgs.length;
|
||||
const cultureId = cells.culture[cell];
|
||||
const name = Names.getCulture(cultureId);
|
||||
burgs.push({
|
||||
cell, x, y,
|
||||
state: 0,
|
||||
i: burg,
|
||||
culture: cultureId,
|
||||
name,
|
||||
capital: 0,
|
||||
feature: cells.f[cell],
|
||||
settlementType: "smallVillage",
|
||||
basePopulation: gauss(275, 225, 50, 500, 2) // 50-500 population
|
||||
});
|
||||
burgsTree.add([x, y]);
|
||||
cells.burg[cell] = burg;
|
||||
villagesAdded++;
|
||||
}
|
||||
spacing *= 0.8;
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("placeSmallVillages");
|
||||
return villagesAdded;
|
||||
}
|
||||
|
||||
// Place large villages (200-1000 pop)
|
||||
function placeLargeVillages() {
|
||||
TIME && console.time("placeLargeVillages");
|
||||
|
||||
const score = new Int16Array(cells.s.map(s => s * gauss(1.2, 2, 0, 20, 3)));
|
||||
const candidates = cells.i
|
||||
.filter(i => !cells.burg[i] && score[i] > 0 && cells.culture[i])
|
||||
.sort((a, b) => score[b] - score[a]);
|
||||
|
||||
// Large villages should be ~12% of settlements
|
||||
const totalSettlements = manorsInput.value == 100000
|
||||
? rn(candidates.length / 5 / (grid.points.length / 10000) ** 0.8)
|
||||
: manorsInput.valueAsNumber;
|
||||
const villageCount = Math.floor(totalSettlements * 0.12);
|
||||
|
||||
const burgsTree = burgs[0];
|
||||
const mapScale = Math.sqrt(graphWidth * graphHeight / 1000000);
|
||||
let spacing = 12 * mapScale; // 8-12 km spacing
|
||||
|
||||
let villagesAdded = 0;
|
||||
|
||||
while (villagesAdded < villageCount && spacing > 2) {
|
||||
for (let i = 0; villagesAdded < villageCount && i < candidates.length; i++) {
|
||||
const cell = candidates[i];
|
||||
const [x, y] = cells.p[cell];
|
||||
|
||||
const adjustedSpacing = spacing * gauss(1, 0.3, 0.5, 1.5, 2);
|
||||
|
||||
if (burgsTree.find(x, y, adjustedSpacing) !== undefined) continue;
|
||||
|
||||
const burg = burgs.length;
|
||||
const cultureId = cells.culture[cell];
|
||||
const name = Names.getCulture(cultureId);
|
||||
burgs.push({
|
||||
cell, x, y,
|
||||
state: 0,
|
||||
i: burg,
|
||||
culture: cultureId,
|
||||
name,
|
||||
capital: 0,
|
||||
feature: cells.f[cell],
|
||||
settlementType: "largeVillage",
|
||||
basePopulation: gauss(600, 400, 200, 1000, 2) // 200-1000 population
|
||||
});
|
||||
burgsTree.add([x, y]);
|
||||
cells.burg[cell] = burg;
|
||||
villagesAdded++;
|
||||
}
|
||||
spacing *= 0.8;
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("placeLargeVillages");
|
||||
return villagesAdded;
|
||||
}
|
||||
|
||||
// Place market towns (1000-10000 pop)
|
||||
function placeMarketTowns() {
|
||||
TIME && console.time("placeMarketTowns");
|
||||
|
||||
const score = new Int16Array(cells.s.map(s => s * gauss(1.5, 3, 0, 25, 3)));
|
||||
const candidates = cells.i
|
||||
.filter(i => !cells.burg[i] && score[i] > 0 && cells.culture[i])
|
||||
.sort((a, b) => score[b] - score[a]);
|
||||
|
||||
// Market towns should be ~7% of settlements
|
||||
const totalSettlements = manorsInput.value == 100000
|
||||
? rn(candidates.length / 5 / (grid.points.length / 10000) ** 0.8)
|
||||
: manorsInput.valueAsNumber;
|
||||
const townCount = Math.floor(totalSettlements * 0.07);
|
||||
|
||||
const burgsTree = burgs[0];
|
||||
const mapScale = Math.sqrt(graphWidth * graphHeight / 1000000);
|
||||
let spacing = 25 * mapScale; // 15-30 km spacing (market day walking distance)
|
||||
|
||||
let townsAdded = 0;
|
||||
|
||||
// Add existing burgs to tree
|
||||
for (let i = 1; i < burgs.length; i++) {
|
||||
if (burgs[i] && burgs[i].x !== undefined) {
|
||||
burgsTree.add([burgs[i].x, burgs[i].y]);
|
||||
}
|
||||
}
|
||||
|
||||
while (burgsAdded < burgsNumber && spacing > 1) {
|
||||
for (let i = 0; burgsAdded < burgsNumber && i < sorted.length; i++) {
|
||||
if (cells.burg[sorted[i]]) continue;
|
||||
const cell = sorted[i];
|
||||
while (townsAdded < townCount && spacing > 5) {
|
||||
for (let i = 0; townsAdded < townCount && i < candidates.length; i++) {
|
||||
const cell = candidates[i];
|
||||
const [x, y] = cells.p[cell];
|
||||
|
||||
// Adjust spacing based on hierarchy - closer spacing near population centers
|
||||
const populationMultiplier = getPopulationMultiplier(cell);
|
||||
const adjustedSpacing = spacing * gauss(1, 0.3, 0.2, 2, 2) * (2 - populationMultiplier);
|
||||
|
||||
|
||||
const adjustedSpacing = spacing * gauss(1, 0.3, 0.7, 1.3, 2);
|
||||
|
||||
if (burgsTree.find(x, y, adjustedSpacing) !== undefined) continue;
|
||||
|
||||
|
||||
const burg = burgs.length;
|
||||
const culture = cells.culture[cell];
|
||||
const name = Names.getCulture(culture);
|
||||
const cultureId = cells.culture[cell];
|
||||
const name = Names.getCulture(cultureId);
|
||||
burgs.push({
|
||||
cell, x, y,
|
||||
state: 0,
|
||||
i: burg,
|
||||
culture,
|
||||
name,
|
||||
capital: 0,
|
||||
cell, x, y,
|
||||
state: 0,
|
||||
i: burg,
|
||||
culture: cultureId,
|
||||
name,
|
||||
capital: 0,
|
||||
feature: cells.f[cell],
|
||||
hierarchicalScore: hierarchicalScore[cell]
|
||||
settlementType: "marketTown",
|
||||
basePopulation: gauss(5500, 4500, 1000, 10000, 2), // 1000-10000 population
|
||||
plaza: 1 // Market towns always have market squares
|
||||
});
|
||||
burgsTree.add([x, y]);
|
||||
cells.burg[cell] = burg;
|
||||
burgsAdded++;
|
||||
townsAdded++;
|
||||
}
|
||||
spacing *= 0.5;
|
||||
}
|
||||
|
||||
if (manorsInput.value != 1000 && burgsAdded < desiredNumber) {
|
||||
ERROR && console.error(`Cannot place all burgs. Requested ${desiredNumber}, placed ${burgsAdded}`);
|
||||
spacing *= 0.8;
|
||||
}
|
||||
|
||||
burgs[0] = {name: undefined};
|
||||
TIME && console.timeEnd("placeMarketTowns");
|
||||
return townsAdded;
|
||||
}
|
||||
|
||||
// Modified placeTowns to call the tiered functions
|
||||
function placeTowns() {
|
||||
TIME && console.time("placeTowns");
|
||||
|
||||
// Place settlements in hierarchical order
|
||||
const hamletsPlaced = placeHamlets();
|
||||
const smallVillagesPlaced = placeSmallVillages();
|
||||
const largeVillagesPlaced = placeLargeVillages();
|
||||
const marketTownsPlaced = placeMarketTowns();
|
||||
|
||||
const totalPlaced = hamletsPlaced + smallVillagesPlaced + largeVillagesPlaced + marketTownsPlaced;
|
||||
|
||||
INFO && console.info(`Settlements placed: ${totalPlaced} total`);
|
||||
INFO && console.info(`- Hamlets (10-50 pop): ${hamletsPlaced}`);
|
||||
INFO && console.info(`- Small villages (50-500 pop): ${smallVillagesPlaced}`);
|
||||
INFO && console.info(`- Large villages (200-1000 pop): ${largeVillagesPlaced}`);
|
||||
INFO && console.info(`- Market towns (1000-10000 pop): ${marketTownsPlaced}`);
|
||||
|
||||
TIME && console.timeEnd("placeTowns");
|
||||
}
|
||||
};
|
||||
|
|
@ -390,25 +563,28 @@ window.BurgsAndStates = (() => {
|
|||
b.port = port ? f : 0; // port is defined by water body id it lays on
|
||||
} else b.port = 0;
|
||||
|
||||
// calculate hierarchical population based on burg type and position
|
||||
let basePopulation = Math.max(cells.s[i] / 8 + b.i / 1000 + (i % 100) / 1000, 0.1);
|
||||
|
||||
// Apply hierarchical multipliers
|
||||
if (b.capital) {
|
||||
basePopulation *= 1.8; // Capitals are major population centers
|
||||
// Use settlement type-based population if available (from new tiered system)
|
||||
let basePopulation;
|
||||
|
||||
if (b.basePopulation) {
|
||||
// New tiered settlements have predefined base populations
|
||||
basePopulation = b.basePopulation / 1000; // Convert to thousands for consistency
|
||||
} else if (b.capital) {
|
||||
// Capitals: major cities (10,000-200,000)
|
||||
basePopulation = gauss(50, 75, 10, 200, 2);
|
||||
} else if (b.isLargePort) {
|
||||
basePopulation *= 1.6; // Large ports are significant population centers
|
||||
} else if (b.isRegionalCenter) {
|
||||
basePopulation *= 1.3; // Regional centers have elevated population
|
||||
} else if (b.hierarchicalScore) {
|
||||
// Use the hierarchical score calculated during placement for population gradient
|
||||
const maxHierarchicalScore = Math.max(...pack.burgs.filter(burg => burg.hierarchicalScore).map(burg => burg.hierarchicalScore));
|
||||
if (maxHierarchicalScore > 0) {
|
||||
const hierarchicalMultiplier = 0.7 + (b.hierarchicalScore / maxHierarchicalScore) * 0.6;
|
||||
basePopulation *= hierarchicalMultiplier;
|
||||
}
|
||||
// Large ports: significant cities (5,000-50,000)
|
||||
basePopulation = gauss(20, 30, 5, 50, 2);
|
||||
} else if (b.isRegionalCenter || b.guaranteedPlaza) {
|
||||
// Regional centers: market towns (1,000-10,000)
|
||||
basePopulation = gauss(5.5, 4.5, 1, 10, 2);
|
||||
} else {
|
||||
// Default: scale down significantly for medieval demographics
|
||||
// Most settlements should be under 100 people
|
||||
const cellScore = Math.max(cells.s[i] / 80, 0.01); // Reduced from /8 to /80
|
||||
basePopulation = cellScore * gauss(0.05, 0.045, 0.01, 0.1, 2); // 10-100 people for most
|
||||
}
|
||||
|
||||
|
||||
b.population = rn(basePopulation, 3);
|
||||
|
||||
if (b.port) {
|
||||
|
|
@ -420,8 +596,12 @@ window.BurgsAndStates = (() => {
|
|||
b.y = y;
|
||||
}
|
||||
|
||||
// add random factor (reduced to maintain hierarchy)
|
||||
b.population = rn(b.population * gauss(1.8, 2.5, 0.7, 15, 2.5), 3);
|
||||
// Apply minor random variation while maintaining hierarchy
|
||||
// Much reduced from original to preserve medieval demographics
|
||||
if (!b.basePopulation) {
|
||||
// Only apply variation to non-tiered settlements
|
||||
b.population = rn(b.population * gauss(1, 0.2, 0.8, 1.2, 3), 3);
|
||||
}
|
||||
|
||||
// shift burgs on rivers semi-randomly and just a bit
|
||||
if (!b.port && cells.r[i]) {
|
||||
|
|
@ -432,17 +612,34 @@ window.BurgsAndStates = (() => {
|
|||
else b.y = rn(b.y - shift, 2);
|
||||
}
|
||||
|
||||
// define emblem
|
||||
const state = pack.states[b.state];
|
||||
const stateCOA = state.coa;
|
||||
let kinship = 0.25;
|
||||
if (b.capital) kinship += 0.1;
|
||||
else if (b.port) kinship -= 0.1;
|
||||
if (b.culture !== state.culture) kinship -= 0.25;
|
||||
b.type = getType(i, b.port);
|
||||
const type = b.capital && P(0.2) ? "Capital" : b.type === "Generic" ? "City" : b.type;
|
||||
b.coa = COA.generate(stateCOA, kinship, null, type);
|
||||
b.coa.shield = COA.getShield(b.culture, b.state);
|
||||
// define emblem - only for settlements with 500+ population (0.5 in thousands)
|
||||
// Small hamlets and tiny villages don't have coats of arms
|
||||
if (b.population >= 0.5 || b.capital || b.port) {
|
||||
const state = pack.states[b.state];
|
||||
const stateCOA = state.coa;
|
||||
let kinship = 0.25;
|
||||
if (b.capital) kinship += 0.1;
|
||||
else if (b.port) kinship -= 0.1;
|
||||
if (b.culture !== state.culture) kinship -= 0.25;
|
||||
b.type = getType(i, b.port);
|
||||
const type = b.capital && P(0.2) ? "Capital" : b.type === "Generic" ? "City" : b.type;
|
||||
|
||||
// Use performance optimizer for COA generation if available
|
||||
const perf = window.PerformanceOptimizer;
|
||||
if (perf) {
|
||||
perf.measureTime('coaGeneration', () => {
|
||||
b.coa = COA.generate(stateCOA, kinship, null, type);
|
||||
b.coa.shield = COA.getShield(b.culture, b.state);
|
||||
});
|
||||
} else {
|
||||
b.coa = COA.generate(stateCOA, kinship, null, type);
|
||||
b.coa.shield = COA.getShield(b.culture, b.state);
|
||||
}
|
||||
} else {
|
||||
// No COA for tiny settlements
|
||||
b.type = getType(i, b.port);
|
||||
b.coa = null;
|
||||
}
|
||||
}
|
||||
|
||||
// de-assign port status if it's the only one on feature
|
||||
|
|
@ -495,6 +692,80 @@ window.BurgsAndStates = (() => {
|
|||
return "Generic";
|
||||
};
|
||||
|
||||
// Assign economic features based on strategic location
|
||||
const assignEconomicFeatures = burg => {
|
||||
const {cells, routes} = pack;
|
||||
const cellId = burg.cell;
|
||||
|
||||
// Trading Post: Located at river crossings, mountain passes, or route intersections
|
||||
burg.tradingPost = 0;
|
||||
burg.seasonalFair = 0;
|
||||
|
||||
// Check if at river crossing
|
||||
const isRiverCrossing = cells.r[cellId] && Routes.isCrossroad(cellId);
|
||||
|
||||
// Check if at mountain pass (moderate elevation with routes)
|
||||
const isMountainPass = cells.h[cellId] > 50 && cells.h[cellId] < 67 && Routes.hasRoad(cellId);
|
||||
|
||||
// Check if at route intersection
|
||||
const isRouteHub = Routes.isCrossroad(cellId);
|
||||
|
||||
// Trading posts at strategic locations
|
||||
if (isRiverCrossing || isMountainPass || isRouteHub) {
|
||||
// Higher chance for larger settlements
|
||||
let tradingPostChance = 0.2;
|
||||
if (burg.settlementType === "marketTown" || burg.plaza === 1) tradingPostChance = 0.8;
|
||||
else if (burg.settlementType === "largeVillage") tradingPostChance = 0.5;
|
||||
else if (burg.settlementType === "smallVillage") tradingPostChance = 0.3;
|
||||
|
||||
burg.tradingPost = Number(P(tradingPostChance));
|
||||
}
|
||||
|
||||
// Seasonal Fairs: Market towns and larger settlements
|
||||
// Based on medieval Champagne fairs model - 6 major fairs rotating through the year
|
||||
if (burg.settlementType === "marketTown" || burg.capital || burg.population > 5) {
|
||||
let fairChance = 0.3;
|
||||
if (burg.capital) fairChance = 0.7;
|
||||
if (burg.population > 10) fairChance = 0.8;
|
||||
if (burg.tradingPost) fairChance *= 1.2; // Trading posts more likely to have fairs
|
||||
|
||||
burg.seasonalFair = Number(P(Math.min(fairChance, 1)));
|
||||
|
||||
// Assign fair season if settlement has a fair
|
||||
if (burg.seasonalFair) {
|
||||
const seasons = ["Spring", "Summer", "Autumn", "Winter"];
|
||||
const months = [
|
||||
"Early Spring", "Mid Spring", "Late Spring",
|
||||
"Early Summer", "Midsummer", "Late Summer",
|
||||
"Early Autumn", "Harvest", "Late Autumn",
|
||||
"Early Winter", "Midwinter", "Late Winter"
|
||||
];
|
||||
|
||||
// Major fairs get specific months, smaller get seasons
|
||||
if (burg.capital || burg.population > 15) {
|
||||
burg.fairTime = ra(months);
|
||||
} else {
|
||||
burg.fairTime = ra(seasons);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Port markets - enhanced maritime trade
|
||||
if (burg.port) {
|
||||
// All ports have some market activity
|
||||
if (!burg.plaza) burg.plaza = Number(P(0.7));
|
||||
|
||||
// Major ports likely to have permanent markets and fairs
|
||||
if (burg.isLargePort) {
|
||||
burg.plaza = 1;
|
||||
if (!burg.seasonalFair) {
|
||||
burg.seasonalFair = Number(P(0.6));
|
||||
if (burg.seasonalFair) burg.fairTime = "Maritime Trade Season";
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const defineBurgFeatures = burg => {
|
||||
const {cells} = pack;
|
||||
|
||||
|
|
@ -502,53 +773,84 @@ window.BurgsAndStates = (() => {
|
|||
.filter(b => (burg ? b.i == burg.i : b.i && !b.removed && !b.lock))
|
||||
.forEach(b => {
|
||||
const pop = b.population;
|
||||
|
||||
// Citadel assignment - capitals and major centers get priority
|
||||
b.citadel = Number(b.capital || b.isLargePort || (pop > 50 && P(0.75)) || (pop > 15 && P(0.5)) || P(0.1));
|
||||
|
||||
// Plaza assignment - ensure regional centers get plazas, scale with hierarchy
|
||||
if (b.guaranteedPlaza || b.isRegionalCenter) {
|
||||
b.plaza = 1; // Regional centers always get plazas
|
||||
} else if (b.capital || b.isLargePort) {
|
||||
b.plaza = Number(P(0.9)); // Primary centers very likely to have plazas
|
||||
} else {
|
||||
// Regular settlements based on population and proximity to centers
|
||||
let plazaChance = 0.6;
|
||||
if (pop > 20) plazaChance = 0.9;
|
||||
else if (pop > 10) plazaChance = 0.8;
|
||||
else if (pop > 4) plazaChance = 0.7;
|
||||
|
||||
// Reduce chance if far from any major center
|
||||
if (b.hierarchicalScore) {
|
||||
const maxScore = Math.max(...pack.burgs.filter(burg => burg.hierarchicalScore).map(burg => burg.hierarchicalScore));
|
||||
if (maxScore > 0) {
|
||||
const hierarchyFactor = b.hierarchicalScore / maxScore;
|
||||
plazaChance *= (0.5 + hierarchyFactor * 0.5); // Scale with hierarchy
|
||||
}
|
||||
|
||||
// Check for strategic economic locations
|
||||
assignEconomicFeatures(b);
|
||||
|
||||
// Settlement type-based feature assignment for new tiered system
|
||||
if (b.settlementType) {
|
||||
switch(b.settlementType) {
|
||||
case "hamlet":
|
||||
b.citadel = 0;
|
||||
b.plaza = Number(P(0.05)); // Very rare
|
||||
b.walls = 0;
|
||||
b.shanty = 0;
|
||||
b.temple = Number(P(0.1)); // Small shrine maybe
|
||||
break;
|
||||
case "smallVillage":
|
||||
b.citadel = Number(P(0.05));
|
||||
b.plaza = Number(P(0.2)); // Some have small market areas
|
||||
b.walls = Number(P(0.1)); // Rarely walled
|
||||
b.shanty = 0;
|
||||
b.temple = Number(P(0.3)); // Parish church
|
||||
break;
|
||||
case "largeVillage":
|
||||
b.citadel = Number(P(0.1));
|
||||
b.plaza = Number(P(0.5)); // Half have market squares
|
||||
b.walls = Number(P(0.25)); // Some are walled
|
||||
b.shanty = Number(P(0.05));
|
||||
b.temple = Number(P(0.6)); // Most have churches
|
||||
break;
|
||||
case "marketTown":
|
||||
b.citadel = Number(P(0.4));
|
||||
b.plaza = 1; // All market towns have market squares
|
||||
b.walls = Number(P(0.7)); // Most are walled
|
||||
b.shanty = Number(P(0.2));
|
||||
b.temple = Number(P(0.8)); // Most have significant churches
|
||||
break;
|
||||
}
|
||||
|
||||
b.plaza = Number(P(plazaChance));
|
||||
} else {
|
||||
// Original logic for non-tiered settlements
|
||||
// Citadel assignment - capitals and major centers get priority
|
||||
b.citadel = Number(b.capital || b.isLargePort || (pop > 50 && P(0.75)) || (pop > 15 && P(0.5)) || P(0.1));
|
||||
|
||||
// Plaza assignment - ensure regional centers get plazas, scale with hierarchy
|
||||
if (b.guaranteedPlaza || b.isRegionalCenter || b.plaza === 1) {
|
||||
b.plaza = 1; // Keep existing plazas and regional centers
|
||||
} else if (b.capital || b.isLargePort) {
|
||||
b.plaza = Number(P(0.9)); // Primary centers very likely to have plazas
|
||||
} else {
|
||||
// Adjusted for medieval scale populations
|
||||
let plazaChance = 0.1;
|
||||
if (pop > 10) plazaChance = 0.8;
|
||||
else if (pop > 5) plazaChance = 0.6;
|
||||
else if (pop > 1) plazaChance = 0.3;
|
||||
else if (pop > 0.5) plazaChance = 0.15;
|
||||
|
||||
b.plaza = Number(P(plazaChance));
|
||||
}
|
||||
|
||||
// Walls assignment - adjusted for medieval populations
|
||||
b.walls = Number(b.capital || b.isLargePort || pop > 10 || (pop > 5 && P(0.6)) || (pop > 1 && P(0.3)) || P(0.05));
|
||||
|
||||
// Shanty assignment - adjusted for medieval populations
|
||||
b.shanty = Number(pop > 20 || (pop > 10 && P(0.5)) || (pop > 5 && b.walls && P(0.2)));
|
||||
|
||||
// Temple assignment - influenced by hierarchy and theocracy
|
||||
const religion = cells.religion[b.cell];
|
||||
const theocracy = pack.states[b.state].form === "Theocracy";
|
||||
let templeChance = 0;
|
||||
|
||||
if (religion && theocracy && P(0.5)) templeChance = 1;
|
||||
else if (b.capital || b.isLargePort) templeChance = 0.8;
|
||||
else if (b.isRegionalCenter) templeChance = 0.6;
|
||||
else if (pop > 10) templeChance = 0.6;
|
||||
else if (pop > 5) templeChance = 0.4;
|
||||
else if (pop > 1) templeChance = 0.2;
|
||||
else templeChance = 0.05;
|
||||
|
||||
b.temple = Number(P(templeChance));
|
||||
}
|
||||
|
||||
// Walls assignment - hierarchy-aware
|
||||
b.walls = Number(b.capital || b.isLargePort || pop > 30 || (pop > 20 && P(0.75)) || (pop > 10 && P(0.5)) || P(0.1));
|
||||
|
||||
// Shanty assignment - more common in larger population centers
|
||||
b.shanty = Number(pop > 60 || (pop > 40 && P(0.75)) || (pop > 20 && b.walls && P(0.4)));
|
||||
|
||||
// Temple assignment - influenced by hierarchy and theocracy
|
||||
const religion = cells.religion[b.cell];
|
||||
const theocracy = pack.states[b.state].form === "Theocracy";
|
||||
let templeChance = 0;
|
||||
|
||||
if (religion && theocracy && P(0.5)) templeChance = 1;
|
||||
else if (b.capital || b.isLargePort) templeChance = 0.8;
|
||||
else if (b.isRegionalCenter) templeChance = 0.6;
|
||||
else if (pop > 50) templeChance = 0.7;
|
||||
else if (pop > 35) templeChance = 0.5;
|
||||
else if (pop > 20) templeChance = 0.3;
|
||||
|
||||
b.temple = Number(P(templeChance));
|
||||
});
|
||||
};
|
||||
|
||||
|
|
@ -723,10 +1025,13 @@ window.BurgsAndStates = (() => {
|
|||
// collect stats
|
||||
states[s].cells += 1;
|
||||
states[s].area += cells.area[i];
|
||||
states[s].rural += cells.pop[i];
|
||||
if (cells.burg[i]) {
|
||||
// Burg represents ALL population for this cell (stored in thousands)
|
||||
states[s].urban += pack.burgs[cells.burg[i]].population;
|
||||
states[s].burgs++;
|
||||
} else {
|
||||
// Only count cells.pop for unsettled areas (no burg present)
|
||||
states[s].rural += cells.pop[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -166,12 +166,40 @@ window.Cultures = (function () {
|
|||
|
||||
function defineCultureExpansionism(type) {
|
||||
let base = 1; // Generic
|
||||
if (type === "Lake") base = 0.8;
|
||||
else if (type === "Naval") base = 1.5;
|
||||
else if (type === "River") base = 0.9;
|
||||
else if (type === "Nomadic") base = 1.5;
|
||||
else if (type === "Hunting") base = 0.7;
|
||||
else if (type === "Highland") base = 1.2;
|
||||
let routeDensity = 1; // Route density modifier
|
||||
let settlementPattern = "clustered"; // Settlement distribution pattern
|
||||
|
||||
// Define cultural characteristics that affect routes and settlements
|
||||
if (type === "Lake") {
|
||||
base = 0.8;
|
||||
routeDensity = 0.9; // Moderate route density around lakes
|
||||
settlementPattern = "lakeside";
|
||||
} else if (type === "Naval") {
|
||||
base = 1.5;
|
||||
routeDensity = 1.3; // High route density for maritime trade
|
||||
settlementPattern = "coastal";
|
||||
} else if (type === "River") {
|
||||
base = 0.9;
|
||||
routeDensity = 1.2; // Dense routes along rivers
|
||||
settlementPattern = "linear"; // Settlements follow river lines
|
||||
} else if (type === "Nomadic") {
|
||||
base = 1.5;
|
||||
routeDensity = 0.5; // Few permanent routes
|
||||
settlementPattern = "dispersed";
|
||||
} else if (type === "Hunting") {
|
||||
base = 0.7;
|
||||
routeDensity = 0.6; // Minimal routes, mostly trails
|
||||
settlementPattern = "scattered";
|
||||
} else if (type === "Highland") {
|
||||
base = 1.2;
|
||||
routeDensity = 0.8; // Routes follow valleys
|
||||
settlementPattern = "valley";
|
||||
}
|
||||
|
||||
// Store additional cultural characteristics
|
||||
cultures[cultures.length - 1].routeDensity = routeDensity;
|
||||
cultures[cultures.length - 1].settlementPattern = settlementPattern;
|
||||
|
||||
return rn(((Math.random() * byId("sizeVariety").value) / 2 + 1) * base, 1);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -109,9 +109,14 @@ function culturesCollectStatistics() {
|
|||
const cultureId = cells.culture[i];
|
||||
cultures[cultureId].cells += 1;
|
||||
cultures[cultureId].area += cells.area[i];
|
||||
cultures[cultureId].rural += cells.pop[i];
|
||||
const burgId = cells.burg[i];
|
||||
if (burgId) cultures[cultureId].urban += burgs[burgId].population;
|
||||
if (burgId) {
|
||||
// Burg represents ALL population for this cell (stored in thousands)
|
||||
cultures[cultureId].urban += burgs[burgId].population;
|
||||
} else {
|
||||
// Only count cells.pop for unsettled areas (no burg present)
|
||||
cultures[cultureId].rural += cells.pop[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -128,7 +133,7 @@ function culturesEditorAddLines() {
|
|||
if (c.removed) continue;
|
||||
const area = getArea(c.area);
|
||||
const rural = c.rural * populationRate;
|
||||
const urban = c.urban * populationRate * urbanization;
|
||||
const urban = c.urban * 1000 * urbanization;
|
||||
const population = rn(rural + urban);
|
||||
const populationTip = `Total population: ${si(population)}. Rural population: ${si(rural)}. Urban population: ${si(
|
||||
urban
|
||||
|
|
@ -635,7 +640,7 @@ async function showHierarchy() {
|
|||
const getDescription = culture => {
|
||||
const {name, type, rural, urban} = culture;
|
||||
|
||||
const population = rural * populationRate + urban * populationRate * urbanization;
|
||||
const population = rural * populationRate + urban * 1000 * urbanization;
|
||||
const populationText = population > 0 ? si(rn(population)) + " people" : "Extinct";
|
||||
return `${name} culture. ${type}. ${populationText}`;
|
||||
};
|
||||
|
|
|
|||
|
|
@ -119,9 +119,14 @@ function religionsCollectStatistics() {
|
|||
const religionId = cells.religion[i];
|
||||
religions[religionId].cells += 1;
|
||||
religions[religionId].area += cells.area[i];
|
||||
religions[religionId].rural += cells.pop[i];
|
||||
const burgId = cells.burg[i];
|
||||
if (burgId) religions[religionId].urban += burgs[burgId].population;
|
||||
if (burgId) {
|
||||
// Burg represents ALL population for this cell (stored in thousands)
|
||||
religions[religionId].urban += burgs[burgId].population;
|
||||
} else {
|
||||
// Only count cells.pop for unsettled areas (no burg present)
|
||||
religions[religionId].rural += cells.pop[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -138,7 +143,7 @@ function religionsEditorAddLines() {
|
|||
|
||||
const area = getArea(r.area);
|
||||
const rural = r.rural * populationRate;
|
||||
const urban = r.urban * populationRate * urbanization;
|
||||
const urban = r.urban * 1000 * urbanization;
|
||||
const population = rn(rural + urban);
|
||||
const populationTip = `Believers: ${si(population)}; Rural areas: ${si(rural)}; Urban areas: ${si(
|
||||
urban
|
||||
|
|
@ -610,7 +615,7 @@ async function showHierarchy() {
|
|||
};
|
||||
|
||||
const formText = form === type ? "" : ". " + form;
|
||||
const population = rural * populationRate + urban * populationRate * urbanization;
|
||||
const population = rural * populationRate + urban * 1000 * urbanization;
|
||||
const populationText = population > 0 ? si(rn(population)) + " people" : "Extinct";
|
||||
|
||||
return `${name}${getTypeText()}${formText}. ${populationText}`;
|
||||
|
|
|
|||
|
|
@ -161,7 +161,7 @@ function statesEditorAddLines() {
|
|||
if (s.removed) continue;
|
||||
const area = getArea(s.area);
|
||||
const rural = s.rural * populationRate;
|
||||
const urban = s.urban * populationRate * urbanization;
|
||||
const urban = s.urban * 1000 * urbanization;
|
||||
const population = rn(rural + urban);
|
||||
const populationTip = `Total population: ${si(population)}; Rural population: ${si(rural)}; Urban population: ${si(
|
||||
urban
|
||||
|
|
@ -1417,10 +1417,12 @@ function downloadStatesCsv() {
|
|||
const headers = `Id,State,Full Name,Form,Color,Capital,Culture,Type,Expansionism,Cells,Burgs,Area ${unit},Total Population,Rural Population,Urban Population`;
|
||||
const lines = Array.from($body.querySelectorAll(":scope > div"));
|
||||
const data = lines.map($line => {
|
||||
const {id, name, form, color, capital, culture, type, expansionism, cells, burgs, area, population} = $line.dataset;
|
||||
const {id, name, form, color, capital, culture, type, expansionism, cells, burgs, area} = $line.dataset;
|
||||
const {fullName = "", rural, urban} = pack.states[+id];
|
||||
// Rural: convert abstract points to people, Urban: already in thousands so convert to people
|
||||
const ruralPopulation = Math.round(rural * populationRate);
|
||||
const urbanPopulation = Math.round(urban * populationRate * urbanization);
|
||||
const urbanPopulation = Math.round(urban * 1000 * urbanization);
|
||||
const totalPopulation = ruralPopulation + urbanPopulation; // Ensure total matches parts
|
||||
return [
|
||||
id,
|
||||
name,
|
||||
|
|
@ -1434,7 +1436,7 @@ function downloadStatesCsv() {
|
|||
cells,
|
||||
burgs,
|
||||
area,
|
||||
population,
|
||||
totalPopulation, // Use calculated total instead of dataset.population
|
||||
ruralPopulation,
|
||||
urbanPopulation
|
||||
].join(",");
|
||||
|
|
|
|||
|
|
@ -136,9 +136,12 @@ window.Military = (function () {
|
|||
return true;
|
||||
}
|
||||
|
||||
// Rural military generation disabled - all military now comes from burgs only
|
||||
/*
|
||||
// rural cells
|
||||
for (const i of cells.i) {
|
||||
if (!cells.pop[i]) continue;
|
||||
// Only generate rural regiments for cells without burgs (unsettled areas)
|
||||
if (!cells.pop[i] || cells.burg[i]) continue;
|
||||
|
||||
const biome = cells.biome[i];
|
||||
const state = cells.state[i];
|
||||
|
|
@ -148,7 +151,10 @@ window.Military = (function () {
|
|||
const stateObj = states[state];
|
||||
if (!state || stateObj.removed) continue;
|
||||
|
||||
let modifier = cells.pop[i] / 100; // basic rural army in percentages
|
||||
// Medieval military: typically 1-3% of population could be mobilized
|
||||
// cells.pop is the rural population for this cell
|
||||
// modifier represents the base military force from this cell
|
||||
let modifier = cells.pop[i] / 50; // ~2% mobilization rate
|
||||
if (culture !== stateObj.culture) modifier = stateObj.form === "Union" ? modifier / 1.2 : modifier / 2; // non-dominant culture
|
||||
if (religion !== cells.religion[stateObj.center])
|
||||
modifier = stateObj.form === "Theocracy" ? modifier / 2.2 : modifier / 1.4; // non-dominant religion
|
||||
|
|
@ -164,7 +170,7 @@ window.Military = (function () {
|
|||
|
||||
const cellTypeMod = type === "generic" ? 1 : cellTypeModifier[type][unit.type]; // cell specific modifier
|
||||
const army = modifier * perc * cellTypeMod; // rural cell army
|
||||
const total = rn(army * stateObj.temp[unit.name] * populationRate); // total troops
|
||||
const total = rn(army * stateObj.temp[unit.name]); // total troops - NO populationRate multiplier!
|
||||
if (!total) continue;
|
||||
|
||||
let [x, y] = p[i];
|
||||
|
|
@ -190,6 +196,7 @@ window.Military = (function () {
|
|||
});
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// burgs
|
||||
for (const b of pack.burgs) {
|
||||
|
|
@ -201,7 +208,13 @@ window.Military = (function () {
|
|||
const religion = cells.religion[b.cell];
|
||||
|
||||
const stateObj = states[state];
|
||||
let m = (b.population * urbanization) / 100; // basic urban army in percentages
|
||||
|
||||
// Only burgs with significant population can maintain military forces
|
||||
const actualPopulation = b.population * 1000; // Convert from thousands to actual people
|
||||
if (actualPopulation < 500) continue; // Skip burgs under 500 people
|
||||
|
||||
// Medieval military: 2-3% mobilization rate for settlements
|
||||
let m = actualPopulation / 40; // ~2.5% mobilization rate based on actual burg population
|
||||
if (b.capital) m *= 1.2; // capital has household troops
|
||||
if (culture !== stateObj.culture) m = stateObj.form === "Union" ? m / 1.2 : m / 2; // non-dominant culture
|
||||
if (religion !== cells.religion[stateObj.center]) m = stateObj.form === "Theocracy" ? m / 2.2 : m / 1.4; // non-dominant religion
|
||||
|
|
@ -212,11 +225,12 @@ window.Military = (function () {
|
|||
const perc = +unit.urban;
|
||||
if (isNaN(perc) || perc <= 0 || !stateObj.temp[unit.name]) continue;
|
||||
if (!passUnitLimits(unit, biome, state, culture, religion)) continue;
|
||||
if (unit.type === "naval" && (!b.port || !cells.haven[b.cell])) continue; // only ports create naval units
|
||||
// Naval units only from significant ports
|
||||
if (unit.type === "naval" && (!b.port || !cells.haven[b.cell] || b.population < 0.5)) continue;
|
||||
|
||||
const mod = type === "generic" ? 1 : burgTypeModifier[type][unit.type]; // cell specific modifier
|
||||
const army = m * perc * mod; // urban cell army
|
||||
const total = rn(army * stateObj.temp[unit.name] * populationRate); // total troops
|
||||
const total = rn(army * stateObj.temp[unit.name]); // total troops - NO populationRate multiplier!
|
||||
if (!total) continue;
|
||||
|
||||
let [x, y] = p[b.cell];
|
||||
|
|
@ -243,7 +257,7 @@ window.Military = (function () {
|
|||
}
|
||||
}
|
||||
|
||||
const expected = 3 * populationRate; // expected regiment size
|
||||
const expected = 300; // expected regiment size - realistic medieval unit (company/battalion)
|
||||
const mergeable = (n0, n1) => (!n0.s && !n1.s) || n0.u === n1.u; // check if regiments can be merged
|
||||
|
||||
// get regiments for each state
|
||||
|
|
|
|||
355
modules/performance-optimizer.js
Normal file
355
modules/performance-optimizer.js
Normal file
|
|
@ -0,0 +1,355 @@
|
|||
"use strict";
|
||||
|
||||
window.PerformanceOptimizer = (function() {
|
||||
// Performance monitoring
|
||||
const metrics = {
|
||||
burgGeneration: 0,
|
||||
routeGeneration: 0,
|
||||
coaGeneration: 0,
|
||||
provinceGeneration: 0,
|
||||
renderTime: 0
|
||||
};
|
||||
|
||||
// Cache for expensive calculations
|
||||
const cache = new Map();
|
||||
const CACHE_SIZE_LIMIT = 1000;
|
||||
|
||||
// Spatial index for fast nearest neighbor queries
|
||||
class SpatialIndex {
|
||||
constructor() {
|
||||
this.tree = null;
|
||||
this.points = [];
|
||||
}
|
||||
|
||||
build(points) {
|
||||
this.points = points;
|
||||
this.tree = d3.quadtree()
|
||||
.x(d => d.x)
|
||||
.y(d => d.y)
|
||||
.addAll(points);
|
||||
}
|
||||
|
||||
findWithin(x, y, radius) {
|
||||
if (!this.tree) return [];
|
||||
const results = [];
|
||||
|
||||
this.tree.visit((node, x1, y1, x2, y2) => {
|
||||
if (!node.length) {
|
||||
do {
|
||||
const d = node.data;
|
||||
const dx = d.x - x;
|
||||
const dy = d.y - y;
|
||||
if (dx * dx + dy * dy < radius * radius) {
|
||||
results.push(d);
|
||||
}
|
||||
} while (node = node.next);
|
||||
}
|
||||
return x1 > x + radius || x2 < x - radius ||
|
||||
y1 > y + radius || y2 < y - radius;
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
findNearest(x, y, maxDistance = Infinity) {
|
||||
if (!this.tree) return null;
|
||||
|
||||
let closest = null;
|
||||
let closestDistance = maxDistance * maxDistance;
|
||||
|
||||
this.tree.visit((node, x1, y1, x2, y2) => {
|
||||
if (!node.length) {
|
||||
do {
|
||||
const d = node.data;
|
||||
const dx = d.x - x;
|
||||
const dy = d.y - y;
|
||||
const dist = dx * dx + dy * dy;
|
||||
if (dist < closestDistance) {
|
||||
closest = d;
|
||||
closestDistance = dist;
|
||||
}
|
||||
} while (node = node.next);
|
||||
}
|
||||
|
||||
const dx = x < x1 ? x1 - x : x > x2 ? x - x2 : 0;
|
||||
const dy = y < y1 ? y1 - y : y > y2 ? y - y2 : 0;
|
||||
return dx * dx + dy * dy > closestDistance;
|
||||
});
|
||||
|
||||
return closest;
|
||||
}
|
||||
}
|
||||
|
||||
// Lazy loading wrapper for expensive computations
|
||||
class LazyProperty {
|
||||
constructor(computeFn) {
|
||||
this.computeFn = computeFn;
|
||||
this.computed = false;
|
||||
this.value = undefined;
|
||||
}
|
||||
|
||||
get() {
|
||||
if (!this.computed) {
|
||||
this.value = this.computeFn();
|
||||
this.computed = true;
|
||||
}
|
||||
return this.value;
|
||||
}
|
||||
|
||||
reset() {
|
||||
this.computed = false;
|
||||
this.value = undefined;
|
||||
}
|
||||
}
|
||||
|
||||
// Cache management
|
||||
function getCached(key, computeFn) {
|
||||
if (cache.has(key)) {
|
||||
return cache.get(key);
|
||||
}
|
||||
|
||||
const value = computeFn();
|
||||
|
||||
// Limit cache size
|
||||
if (cache.size >= CACHE_SIZE_LIMIT) {
|
||||
const firstKey = cache.keys().next().value;
|
||||
cache.delete(firstKey);
|
||||
}
|
||||
|
||||
cache.set(key, value);
|
||||
return value;
|
||||
}
|
||||
|
||||
function clearCache() {
|
||||
cache.clear();
|
||||
}
|
||||
|
||||
// Performance measurement helpers
|
||||
function measureTime(name, fn) {
|
||||
const start = performance.now();
|
||||
const result = fn();
|
||||
const duration = performance.now() - start;
|
||||
metrics[name] = (metrics[name] || 0) + duration;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Batch processing for large datasets
|
||||
function processBatch(items, processFn, batchSize = 100, onProgress) {
|
||||
return new Promise((resolve) => {
|
||||
let index = 0;
|
||||
const results = [];
|
||||
|
||||
function processNextBatch() {
|
||||
const batch = items.slice(index, index + batchSize);
|
||||
|
||||
for (const item of batch) {
|
||||
results.push(processFn(item));
|
||||
}
|
||||
|
||||
index += batchSize;
|
||||
|
||||
if (onProgress) {
|
||||
onProgress(Math.min(index / items.length, 1));
|
||||
}
|
||||
|
||||
if (index < items.length) {
|
||||
// Use requestIdleCallback if available, otherwise setTimeout
|
||||
if (window.requestIdleCallback) {
|
||||
requestIdleCallback(processNextBatch);
|
||||
} else {
|
||||
setTimeout(processNextBatch, 0);
|
||||
}
|
||||
} else {
|
||||
resolve(results);
|
||||
}
|
||||
}
|
||||
|
||||
processNextBatch();
|
||||
});
|
||||
}
|
||||
|
||||
// Optimize burg feature assignment using lazy evaluation
|
||||
function optimizeBurgFeatures(burgs) {
|
||||
TIME && console.time("optimizeBurgFeatures");
|
||||
|
||||
for (const burg of burgs) {
|
||||
if (!burg.i || burg.removed) continue;
|
||||
|
||||
// Convert expensive properties to lazy evaluation
|
||||
if (!burg.lazyProperties) {
|
||||
burg.lazyProperties = {};
|
||||
|
||||
// Trading post calculation - only compute when needed
|
||||
burg.lazyProperties.tradingPost = new LazyProperty(() => {
|
||||
const {cells} = pack;
|
||||
const cellId = burg.cell;
|
||||
|
||||
const isRiverCrossing = cells.r[cellId] && Routes.isCrossroad && Routes.isCrossroad(cellId);
|
||||
const isMountainPass = cells.h[cellId] > 50 && cells.h[cellId] < 67 && Routes.hasRoad && Routes.hasRoad(cellId);
|
||||
const isRouteHub = Routes.isCrossroad && Routes.isCrossroad(cellId);
|
||||
|
||||
if (isRiverCrossing || isMountainPass || isRouteHub) {
|
||||
let chance = 0.2;
|
||||
if (burg.settlementType === "marketTown" || burg.plaza === 1) chance = 0.8;
|
||||
else if (burg.settlementType === "largeVillage") chance = 0.5;
|
||||
else if (burg.settlementType === "smallVillage") chance = 0.3;
|
||||
return Number(P(chance));
|
||||
}
|
||||
return 0;
|
||||
});
|
||||
|
||||
// Seasonal fair calculation
|
||||
burg.lazyProperties.seasonalFair = new LazyProperty(() => {
|
||||
if (burg.settlementType === "marketTown" || burg.capital || burg.population > 5) {
|
||||
let fairChance = 0.3;
|
||||
if (burg.capital) fairChance = 0.7;
|
||||
if (burg.population > 10) fairChance = 0.8;
|
||||
if (burg.tradingPost) fairChance *= 1.2;
|
||||
|
||||
if (P(Math.min(fairChance, 1))) {
|
||||
const seasons = ["Spring", "Summer", "Autumn", "Winter"];
|
||||
const months = [
|
||||
"Early Spring", "Mid Spring", "Late Spring",
|
||||
"Early Summer", "Midsummer", "Late Summer",
|
||||
"Early Autumn", "Harvest", "Late Autumn",
|
||||
"Early Winter", "Midwinter", "Late Winter"
|
||||
];
|
||||
|
||||
burg.fairTime = (burg.capital || burg.population > 15) ? ra(months) : ra(seasons);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("optimizeBurgFeatures");
|
||||
}
|
||||
|
||||
// Optimized route generation using spatial indexing
|
||||
function createOptimizedRouteFinder() {
|
||||
const burgIndex = new SpatialIndex();
|
||||
|
||||
return {
|
||||
initialize(burgs) {
|
||||
const burgPoints = burgs
|
||||
.filter(b => b.i && !b.removed)
|
||||
.map(b => ({x: b.x, y: b.y, id: b.i, data: b}));
|
||||
burgIndex.build(burgPoints);
|
||||
},
|
||||
|
||||
findNearbyBurgs(x, y, radius) {
|
||||
return burgIndex.findWithin(x, y, radius).map(p => p.data);
|
||||
},
|
||||
|
||||
findNearestBurg(x, y, maxDistance) {
|
||||
const result = burgIndex.findNearest(x, y, maxDistance);
|
||||
return result ? result.data : null;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// Progressive rendering for large datasets
|
||||
async function renderProgressive(elements, renderFn, options = {}) {
|
||||
const {
|
||||
batchSize = 50,
|
||||
priority = 'high', // 'high', 'medium', 'low'
|
||||
onProgress = null,
|
||||
container = null
|
||||
} = options;
|
||||
|
||||
// Sort elements by priority (capitals first, then by population)
|
||||
const sorted = [...elements].sort((a, b) => {
|
||||
if (a.capital && !b.capital) return -1;
|
||||
if (!a.capital && b.capital) return 1;
|
||||
if (a.population && b.population) return b.population - a.population;
|
||||
return 0;
|
||||
});
|
||||
|
||||
// Render high-priority items immediately
|
||||
const highPriority = sorted.filter(e =>
|
||||
e.capital || e.population > 10 || e.isLargePort
|
||||
);
|
||||
|
||||
for (const element of highPriority) {
|
||||
renderFn(element);
|
||||
}
|
||||
|
||||
// Render remaining items progressively
|
||||
const remaining = sorted.filter(e => !highPriority.includes(e));
|
||||
|
||||
if (remaining.length > 0) {
|
||||
await processBatch(remaining, renderFn, batchSize, onProgress);
|
||||
}
|
||||
}
|
||||
|
||||
// Memory management
|
||||
function optimizeMemory() {
|
||||
// Clear unused properties from burgs
|
||||
pack.burgs.forEach(b => {
|
||||
if (!b.i || b.removed) return;
|
||||
|
||||
// Remove temporary properties
|
||||
delete b._temp;
|
||||
delete b._cache;
|
||||
|
||||
// Convert rarely-used properties to lazy evaluation
|
||||
if (b.lazyProperties) {
|
||||
// Reset lazy properties to free memory
|
||||
Object.values(b.lazyProperties).forEach(prop => prop.reset());
|
||||
}
|
||||
});
|
||||
|
||||
// Clear cache
|
||||
clearCache();
|
||||
|
||||
// Force garbage collection if available
|
||||
if (window.gc) {
|
||||
window.gc();
|
||||
}
|
||||
}
|
||||
|
||||
// Performance report
|
||||
function getPerformanceReport() {
|
||||
const report = {
|
||||
metrics: {...metrics},
|
||||
cacheSize: cache.size,
|
||||
memory: performance.memory ? {
|
||||
used: Math.round(performance.memory.usedJSHeapSize / 1048576) + ' MB',
|
||||
total: Math.round(performance.memory.totalJSHeapSize / 1048576) + ' MB',
|
||||
limit: Math.round(performance.memory.jsHeapSizeLimit / 1048576) + ' MB'
|
||||
} : 'Not available',
|
||||
recommendations: []
|
||||
};
|
||||
|
||||
// Add recommendations based on metrics
|
||||
if (metrics.routeGeneration > 5000) {
|
||||
report.recommendations.push('Consider reducing route density for better performance');
|
||||
}
|
||||
if (metrics.coaGeneration > 3000) {
|
||||
report.recommendations.push('Many COAs generated - consider increasing population threshold');
|
||||
}
|
||||
if (cache.size > CACHE_SIZE_LIMIT * 0.9) {
|
||||
report.recommendations.push('Cache is nearly full - consider clearing old entries');
|
||||
}
|
||||
|
||||
return report;
|
||||
}
|
||||
|
||||
// Export public API
|
||||
return {
|
||||
SpatialIndex,
|
||||
LazyProperty,
|
||||
getCached,
|
||||
clearCache,
|
||||
measureTime,
|
||||
processBatch,
|
||||
optimizeBurgFeatures,
|
||||
createOptimizedRouteFinder,
|
||||
renderProgressive,
|
||||
optimizeMemory,
|
||||
getPerformanceReport,
|
||||
metrics
|
||||
};
|
||||
})();
|
||||
|
|
@ -51,24 +51,40 @@ window.Provinces = (function () {
|
|||
.sort((a, b) => b.population * gauss(1, 0.2, 0.5, 1.5, 3) - a.population)
|
||||
.sort((a, b) => b.capital - a.capital);
|
||||
if (stateBurgs.length < 2) return; // at least 2 provinces are required
|
||||
const provincesNumber = Math.max(Math.ceil((stateBurgs.length * provincesRatio) / 100), 2);
|
||||
|
||||
// Cap provinces based on state size and importance, not total burgs
|
||||
// Use only major settlements (capitals, market towns, large villages) as province centers
|
||||
const majorBurgs = stateBurgs.filter(b =>
|
||||
b.capital ||
|
||||
b.settlementType === "marketTown" ||
|
||||
b.settlementType === "largeVillage" ||
|
||||
b.isRegionalCenter ||
|
||||
b.population > 1 // population in thousands
|
||||
);
|
||||
|
||||
// If not enough major burgs, use the most populous ones
|
||||
const provinceCenters = majorBurgs.length >= 2 ? majorBurgs : stateBurgs.slice(0, Math.min(20, stateBurgs.length));
|
||||
|
||||
// Reasonable number of provinces: 2-20 based on ratio
|
||||
const targetProvinces = Math.max(2, Math.min(20, Math.ceil(provinceCenters.length * provincesRatio / 100)));
|
||||
const provincesNumber = Math.min(targetProvinces, provinceCenters.length);
|
||||
|
||||
const form = Object.assign({}, forms[s.form]);
|
||||
|
||||
for (let i = 0; i < provincesNumber; i++) {
|
||||
const provinceId = provinces.length;
|
||||
const center = stateBurgs[i].cell;
|
||||
const burg = stateBurgs[i].i;
|
||||
const c = stateBurgs[i].culture;
|
||||
const center = provinceCenters[i].cell;
|
||||
const burg = provinceCenters[i].i;
|
||||
const c = provinceCenters[i].culture;
|
||||
const nameByBurg = P(0.5);
|
||||
const name = nameByBurg ? stateBurgs[i].name : Names.getState(Names.getCultureShort(c), c);
|
||||
const name = nameByBurg ? provinceCenters[i].name : Names.getState(Names.getCultureShort(c), c);
|
||||
const formName = rw(form);
|
||||
form[formName] += 10;
|
||||
const fullName = name + " " + formName;
|
||||
const color = getMixedColor(s.color);
|
||||
const kinship = nameByBurg ? 0.8 : 0.4;
|
||||
const type = BurgsAndStates.getType(center, burg.port);
|
||||
const coa = COA.generate(stateBurgs[i].coa, kinship, null, type);
|
||||
const type = BurgsAndStates.getType(center, provinceCenters[i].port);
|
||||
const coa = COA.generate(provinceCenters[i].coa, kinship, null, type);
|
||||
coa.shield = COA.getShield(c, s.i);
|
||||
|
||||
s.provinces.push(provinceId);
|
||||
|
|
|
|||
|
|
@ -10,21 +10,49 @@ const ROUTE_TYPE_MODIFIERS = {
|
|||
default: 8 // far ocean
|
||||
};
|
||||
|
||||
// Route tier modifiers for different route types (lower = preferred)
|
||||
const ROUTE_TIER_MODIFIERS = {
|
||||
majorSea: { cost: 0.3, priority: "immediate" }, // Major maritime trade routes
|
||||
royal: { cost: 0.4, priority: "immediate" }, // Capital-to-capital roads
|
||||
market: { cost: 1.0, priority: "background" }, // Regional trade roads
|
||||
local: { cost: 1.5, priority: "background" }, // Village-to-market roads
|
||||
footpath: { cost: 2.0, priority: "background" }, // Hamlet paths
|
||||
regional: { cost: 1.2, priority: "background" } // Regional sea routes
|
||||
};
|
||||
|
||||
window.Routes = (function () {
|
||||
function generate(lockedRoutes = []) {
|
||||
TIME && console.time("generateRoutes");
|
||||
const {capitalsByFeature, burgsByFeature, portsByFeature, primaryByFeature, plazaByFeature, unconnectedBurgsByFeature} = sortBurgsByFeature(pack.burgs);
|
||||
|
||||
const connections = new Map();
|
||||
lockedRoutes.forEach(route => addConnections(route.points.map(p => p[2])));
|
||||
|
||||
const mainRoads = generateMainRoads();
|
||||
const secondaryRoads = generateSecondaryRoads();
|
||||
const trails = generateTrails();
|
||||
const seaRoutes = generateSeaRoutes();
|
||||
// PHASE 1: IMMEDIATE PROCESSING (blocking - critical routes for trade and diplomacy)
|
||||
TIME && console.time("generateCriticalRoutes");
|
||||
const majorSeaRoutes = generateMajorSeaRoutes(); // Tier 1: Long-distance maritime trade
|
||||
const royalRoads = generateRoyalRoads(); // Tier 2: Capital-to-capital connections
|
||||
TIME && console.timeEnd("generateCriticalRoutes");
|
||||
|
||||
// Create initial routes with critical paths only
|
||||
pack.routes = createRoutesData(lockedRoutes);
|
||||
pack.cells.routes = buildLinks(pack.routes);
|
||||
|
||||
// PHASE 2: BACKGROUND PROCESSING (non-blocking - local and regional routes)
|
||||
setTimeout(() => {
|
||||
TIME && console.time("generateRegionalRoutes");
|
||||
const marketRoads = generateMarketRoads(); // Tier 3: Regional trade networks (was mainRoads)
|
||||
const localRoads = generateLocalRoads(); // Tier 4: Village-to-market connections (was secondaryRoads)
|
||||
const footpaths = generateFootpaths(); // Tier 5: Hamlet networks (was trails)
|
||||
const regionalSeaRoutes = generateRegionalSeaRoutes(); // Regional sea connections
|
||||
TIME && console.timeEnd("generateRegionalRoutes");
|
||||
|
||||
// Append regional routes to existing critical routes
|
||||
appendRoutesToPack(marketRoads, localRoads, footpaths, regionalSeaRoutes);
|
||||
}, 100);
|
||||
|
||||
TIME && console.timeEnd("generateRoutes");
|
||||
|
||||
function sortBurgsByFeature(burgs) {
|
||||
const burgsByFeature = {};
|
||||
const capitalsByFeature = {};
|
||||
|
|
@ -66,6 +94,467 @@ window.Routes = (function () {
|
|||
return {burgsByFeature, capitalsByFeature, portsByFeature, primaryByFeature, plazaByFeature, unconnectedBurgsByFeature};
|
||||
}
|
||||
|
||||
// Tier 1: Major Sea Routes - Connect capitals and major ports across ALL water bodies
|
||||
// Simulates long-distance maritime trade like Hanseatic League routes
|
||||
function generateMajorSeaRoutes() {
|
||||
TIME && console.time("generateMajorSeaRoutes");
|
||||
const majorSeaRoutes = [];
|
||||
|
||||
// Get all significant ports for major trade routes
|
||||
const allMajorPorts = [];
|
||||
pack.burgs.forEach(b => {
|
||||
if (b.i && !b.removed && b.port) {
|
||||
// Include more ports in major routes: capitals, large ports, and wealthy market towns
|
||||
if (b.capital ||
|
||||
b.isLargePort ||
|
||||
(b.population >= 5 && b.plaza) || // Major market towns (5000+ pop with plaza)
|
||||
(b.population >= 10)) { // Large cities regardless of status
|
||||
allMajorPorts.push(b);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
if (allMajorPorts.length < 2) {
|
||||
TIME && console.timeEnd("generateMajorSeaRoutes");
|
||||
return majorSeaRoutes;
|
||||
}
|
||||
|
||||
// Sort ports by importance (capitals first, then by population)
|
||||
allMajorPorts.sort((a, b) => {
|
||||
if (a.capital && !b.capital) return -1;
|
||||
if (!a.capital && b.capital) return 1;
|
||||
return b.population - a.population;
|
||||
});
|
||||
|
||||
// Create a more comprehensive trade network
|
||||
// Primary hubs: ALL capital ports and top large ports
|
||||
const capitalPorts = allMajorPorts.filter(p => p.capital);
|
||||
const largePorts = allMajorPorts.filter(p => !p.capital && (p.isLargePort || p.population >= 10));
|
||||
const mediumPorts = allMajorPorts.filter(p => !p.capital && !p.isLargePort && p.population < 10);
|
||||
|
||||
// Use all capitals and top large ports as primary hubs
|
||||
const hubs = [...capitalPorts, ...largePorts.slice(0, Math.max(10, Math.floor(largePorts.length * 0.5)))];
|
||||
const secondaryHubs = [...largePorts.slice(Math.max(10, Math.floor(largePorts.length * 0.5))), ...mediumPorts.slice(0, 20)];
|
||||
|
||||
// Connect primary hubs strategically (not all-to-all to avoid too many routes)
|
||||
// Connect capitals to each other
|
||||
for (let i = 0; i < capitalPorts.length; i++) {
|
||||
for (let j = i + 1; j < capitalPorts.length; j++) {
|
||||
const start = capitalPorts[i].cell;
|
||||
const exit = capitalPorts[j].cell;
|
||||
const distance = Math.sqrt((capitalPorts[i].x - capitalPorts[j].x) ** 2 + (capitalPorts[i].y - capitalPorts[j].y) ** 2);
|
||||
|
||||
// Connect if reasonably distant (long-distance trade) or same cultural sphere
|
||||
if (distance > 50 || capitalPorts[i].culture === capitalPorts[j].culture) {
|
||||
const segments = findPathSegments({isWater: true, connections, start, exit, routeType: "majorSea"});
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
majorSeaRoutes.push({feature: -1, cells: segment, type: "majorSea"});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Connect large ports to nearest 2-3 capitals for trade network
|
||||
largePorts.slice(0, 15).forEach(port => {
|
||||
const nearestCapitals = capitalPorts
|
||||
.map(cap => ({
|
||||
cap,
|
||||
distance: Math.sqrt((port.x - cap.x) ** 2 + (port.y - cap.y) ** 2)
|
||||
}))
|
||||
.sort((a, b) => a.distance - b.distance)
|
||||
.slice(0, Math.min(3, capitalPorts.length)); // Connect to up to 3 nearest capitals
|
||||
|
||||
nearestCapitals.forEach(({cap}) => {
|
||||
const segments = findPathSegments({
|
||||
isWater: true,
|
||||
connections,
|
||||
start: port.cell,
|
||||
exit: cap.cell,
|
||||
routeType: "majorSea"
|
||||
});
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
majorSeaRoutes.push({feature: -1, cells: segment, type: "majorSea"});
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// Connect secondary hubs to nearest primary hub
|
||||
secondaryHubs.forEach(port => {
|
||||
let nearestHub = null;
|
||||
let minDistance = Infinity;
|
||||
|
||||
hubs.forEach(hub => {
|
||||
const distance = Math.sqrt((port.x - hub.x) ** 2 + (port.y - hub.y) ** 2);
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
nearestHub = hub;
|
||||
}
|
||||
});
|
||||
|
||||
if (nearestHub) {
|
||||
const segments = findPathSegments({
|
||||
isWater: true,
|
||||
connections,
|
||||
start: port.cell,
|
||||
exit: nearestHub.cell,
|
||||
routeType: "majorSea"
|
||||
});
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
majorSeaRoutes.push({feature: -1, cells: segment, type: "majorSea"});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
TIME && console.timeEnd("generateMajorSeaRoutes");
|
||||
return majorSeaRoutes;
|
||||
}
|
||||
|
||||
// Tier 2: Royal Roads - Connect all state capitals for diplomatic and military movement
|
||||
function generateRoyalRoads() {
|
||||
TIME && console.time("generateRoyalRoads");
|
||||
const royalRoads = [];
|
||||
|
||||
// Get all state capitals
|
||||
const capitals = [];
|
||||
pack.states.forEach(state => {
|
||||
if (state.i && !state.removed && state.capital) {
|
||||
const capital = pack.burgs[state.capital];
|
||||
if (capital && !capital.removed) {
|
||||
capitals.push(capital);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
if (capitals.length < 2) {
|
||||
TIME && console.timeEnd("generateRoyalRoads");
|
||||
return royalRoads;
|
||||
}
|
||||
|
||||
// Create a minimum spanning tree of capitals using Kruskal's algorithm
|
||||
// This ensures all capitals are connected with minimal total distance
|
||||
const edges = [];
|
||||
for (let i = 0; i < capitals.length; i++) {
|
||||
for (let j = i + 1; j < capitals.length; j++) {
|
||||
const distance = Math.sqrt(
|
||||
(capitals[i].x - capitals[j].x) ** 2 +
|
||||
(capitals[i].y - capitals[j].y) ** 2
|
||||
);
|
||||
edges.push({
|
||||
from: i,
|
||||
to: j,
|
||||
distance,
|
||||
fromCell: capitals[i].cell,
|
||||
toCell: capitals[j].cell
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Sort edges by distance
|
||||
edges.sort((a, b) => a.distance - b.distance);
|
||||
|
||||
// Use union-find to build minimum spanning tree
|
||||
const parent = Array.from({length: capitals.length}, (_, i) => i);
|
||||
const find = (x) => {
|
||||
if (parent[x] !== x) parent[x] = find(parent[x]);
|
||||
return parent[x];
|
||||
};
|
||||
const union = (x, y) => {
|
||||
const px = find(x);
|
||||
const py = find(y);
|
||||
if (px !== py) {
|
||||
parent[px] = py;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
// Build the tree
|
||||
for (const edge of edges) {
|
||||
if (union(edge.from, edge.to)) {
|
||||
const segments = findPathSegments({
|
||||
isWater: false,
|
||||
connections,
|
||||
start: edge.fromCell,
|
||||
exit: edge.toCell,
|
||||
routeType: "royal"
|
||||
});
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
royalRoads.push({
|
||||
feature: pack.cells.f[edge.fromCell],
|
||||
cells: segment,
|
||||
type: "royal"
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("generateRoyalRoads");
|
||||
return royalRoads;
|
||||
}
|
||||
|
||||
// Tier 3: Market Roads - Regional trade networks (enhanced main roads)
|
||||
function generateMarketRoads() {
|
||||
TIME && console.time("generateMarketRoads");
|
||||
const marketRoads = [];
|
||||
|
||||
// Get all market towns (from new settlement hierarchy)
|
||||
const marketTowns = pack.burgs.filter(b =>
|
||||
b.i && !b.removed && (b.settlementType === "marketTown" || b.plaza === 1)
|
||||
);
|
||||
|
||||
// Group market towns by feature/region
|
||||
const marketsByFeature = {};
|
||||
marketTowns.forEach(town => {
|
||||
const feature = town.feature;
|
||||
if (!marketsByFeature[feature]) marketsByFeature[feature] = [];
|
||||
marketsByFeature[feature].push(town);
|
||||
});
|
||||
|
||||
// Connect market towns within regions (15-30 km spacing as per research)
|
||||
for (const [feature, towns] of Object.entries(marketsByFeature)) {
|
||||
if (towns.length < 2) continue;
|
||||
|
||||
// Use Delaunay triangulation for regional connections
|
||||
const points = towns.map(t => [t.x, t.y]);
|
||||
const edges = calculateUrquhartEdges(points);
|
||||
|
||||
edges.forEach(([fromId, toId]) => {
|
||||
const fromTown = towns[fromId];
|
||||
const toTown = towns[toId];
|
||||
|
||||
// Check distance is within daily travel range (15-30 km)
|
||||
const distance = Math.sqrt((fromTown.x - toTown.x) ** 2 + (fromTown.y - toTown.y) ** 2);
|
||||
const mapScale = Math.sqrt(graphWidth * graphHeight / 1000000);
|
||||
const kmDistance = distance / mapScale;
|
||||
|
||||
// Only connect if within reasonable market day travel distance
|
||||
if (kmDistance <= 35) {
|
||||
const segments = findPathSegments({
|
||||
isWater: false,
|
||||
connections,
|
||||
start: fromTown.cell,
|
||||
exit: toTown.cell,
|
||||
routeType: "market"
|
||||
});
|
||||
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
marketRoads.push({
|
||||
feature: Number(feature),
|
||||
cells: segment,
|
||||
type: "market"
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Also use existing main roads logic for primary centers
|
||||
const mainRoads = generateMainRoads();
|
||||
marketRoads.push(...mainRoads);
|
||||
|
||||
TIME && console.timeEnd("generateMarketRoads");
|
||||
return marketRoads;
|
||||
}
|
||||
|
||||
// Tier 4: Local Roads - Village to nearest market town connections
|
||||
function generateLocalRoads() {
|
||||
TIME && console.time("generateLocalRoads");
|
||||
const localRoads = [];
|
||||
|
||||
// Get villages from settlement hierarchy
|
||||
const villages = pack.burgs.filter(b =>
|
||||
b.i && !b.removed && (
|
||||
b.settlementType === "largeVillage" ||
|
||||
b.settlementType === "smallVillage"
|
||||
)
|
||||
);
|
||||
|
||||
// Get market towns and regional centers
|
||||
const marketCenters = pack.burgs.filter(b =>
|
||||
b.i && !b.removed && (
|
||||
b.settlementType === "marketTown" ||
|
||||
b.plaza === 1 ||
|
||||
b.isRegionalCenter ||
|
||||
b.capital
|
||||
)
|
||||
);
|
||||
|
||||
// Connect each village to nearest market center
|
||||
villages.forEach(village => {
|
||||
let nearestMarket = null;
|
||||
let minDistance = Infinity;
|
||||
|
||||
marketCenters.forEach(market => {
|
||||
const distance = Math.sqrt(
|
||||
(village.x - market.x) ** 2 +
|
||||
(village.y - market.y) ** 2
|
||||
);
|
||||
|
||||
// Prefer markets in same state/culture
|
||||
let culturalModifier = 1;
|
||||
if (village.state === market.state) culturalModifier = 0.8;
|
||||
if (village.culture === market.culture) culturalModifier *= 0.9;
|
||||
|
||||
const adjustedDistance = distance * culturalModifier;
|
||||
|
||||
if (adjustedDistance < minDistance) {
|
||||
minDistance = adjustedDistance;
|
||||
nearestMarket = market;
|
||||
}
|
||||
});
|
||||
|
||||
if (nearestMarket) {
|
||||
const segments = findPathSegments({
|
||||
isWater: false,
|
||||
connections,
|
||||
start: village.cell,
|
||||
exit: nearestMarket.cell,
|
||||
routeType: "local"
|
||||
});
|
||||
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
localRoads.push({
|
||||
feature: village.feature,
|
||||
cells: segment,
|
||||
type: "local"
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Also include existing secondary roads
|
||||
const secondaryRoads = generateSecondaryRoads();
|
||||
localRoads.push(...secondaryRoads);
|
||||
|
||||
TIME && console.timeEnd("generateLocalRoads");
|
||||
return localRoads;
|
||||
}
|
||||
|
||||
// Tier 5: Footpaths - Hamlet to village networks
|
||||
function generateFootpaths() {
|
||||
TIME && console.time("generateFootpaths");
|
||||
const footpaths = [];
|
||||
|
||||
// Get hamlets from settlement hierarchy
|
||||
const hamlets = pack.burgs.filter(b =>
|
||||
b.i && !b.removed && b.settlementType === "hamlet"
|
||||
);
|
||||
|
||||
// Get villages and larger settlements
|
||||
const largerSettlements = pack.burgs.filter(b =>
|
||||
b.i && !b.removed && (
|
||||
b.settlementType === "smallVillage" ||
|
||||
b.settlementType === "largeVillage" ||
|
||||
b.settlementType === "marketTown" ||
|
||||
b.plaza === 1
|
||||
)
|
||||
);
|
||||
|
||||
// Connect each hamlet to nearest village (3-6 km as per research)
|
||||
hamlets.forEach(hamlet => {
|
||||
let nearestVillage = null;
|
||||
let minDistance = Infinity;
|
||||
|
||||
largerSettlements.forEach(village => {
|
||||
const distance = Math.sqrt(
|
||||
(hamlet.x - village.x) ** 2 +
|
||||
(hamlet.y - village.y) ** 2
|
||||
);
|
||||
|
||||
// Strong preference for same culture/state
|
||||
let modifier = 1;
|
||||
if (hamlet.state === village.state) modifier = 0.7;
|
||||
if (hamlet.culture === village.culture) modifier *= 0.8;
|
||||
|
||||
const adjustedDistance = distance * modifier;
|
||||
|
||||
// Only connect to nearby settlements (6 km max range)
|
||||
const mapScale = Math.sqrt(graphWidth * graphHeight / 1000000);
|
||||
const kmDistance = distance / mapScale;
|
||||
|
||||
if (kmDistance <= 8 && adjustedDistance < minDistance) {
|
||||
minDistance = adjustedDistance;
|
||||
nearestVillage = village;
|
||||
}
|
||||
});
|
||||
|
||||
if (nearestVillage) {
|
||||
const segments = findPathSegments({
|
||||
isWater: false,
|
||||
connections,
|
||||
start: hamlet.cell,
|
||||
exit: nearestVillage.cell,
|
||||
routeType: "footpath"
|
||||
});
|
||||
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
footpaths.push({
|
||||
feature: hamlet.feature,
|
||||
cells: segment,
|
||||
type: "footpath"
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Also include existing trails for backward compatibility
|
||||
const trails = generateTrails();
|
||||
footpaths.push(...trails);
|
||||
|
||||
TIME && console.timeEnd("generateFootpaths");
|
||||
return footpaths;
|
||||
}
|
||||
|
||||
// Regional sea routes (within water bodies)
|
||||
function generateRegionalSeaRoutes() {
|
||||
TIME && console.time("generateRegionalSeaRoutes");
|
||||
const regionalSeaRoutes = [];
|
||||
|
||||
// Filter ports to only include significant ones (500+ population or special status)
|
||||
// Small fishing villages don't participate in trade routes
|
||||
const significantPortsByFeature = {};
|
||||
|
||||
for (const [featureId, featurePorts] of Object.entries(portsByFeature)) {
|
||||
const significantPorts = featurePorts.filter(burg =>
|
||||
burg.population >= 0.5 || // 500+ population (in thousands)
|
||||
burg.capital || // Capital cities
|
||||
burg.isLargePort || // Designated large ports
|
||||
burg.plaza || // Market towns with plazas
|
||||
burg.isRegionalCenter // Regional centers
|
||||
);
|
||||
|
||||
if (significantPorts.length >= 2) {
|
||||
significantPortsByFeature[featureId] = significantPorts;
|
||||
}
|
||||
}
|
||||
|
||||
// Connect significant ports within each water body
|
||||
for (const [featureId, featurePorts] of Object.entries(significantPortsByFeature)) {
|
||||
const points = featurePorts.map(burg => [burg.x, burg.y]);
|
||||
const urquhartEdges = calculateUrquhartEdges(points);
|
||||
|
||||
urquhartEdges.forEach(([fromId, toId]) => {
|
||||
const start = featurePorts[fromId].cell;
|
||||
const exit = featurePorts[toId].cell;
|
||||
const segments = findPathSegments({isWater: true, connections, start, exit, routeType: "regional"});
|
||||
for (const segment of segments) {
|
||||
addConnections(segment);
|
||||
regionalSeaRoutes.push({feature: Number(featureId), cells: segment, type: "regional"});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("generateRegionalSeaRoutes");
|
||||
return regionalSeaRoutes;
|
||||
}
|
||||
|
||||
function generateMainRoads() {
|
||||
TIME && console.time("generateMainRoads");
|
||||
const mainRoads = [];
|
||||
|
|
@ -260,8 +749,8 @@ window.Routes = (function () {
|
|||
}
|
||||
}
|
||||
|
||||
function findPathSegments({isWater, connections, start, exit}) {
|
||||
const getCost = createCostEvaluator({isWater, connections});
|
||||
function findPathSegments({isWater, connections, start, exit, routeType}) {
|
||||
const getCost = createCostEvaluator({isWater, connections, routeType});
|
||||
const pathCells = findPath(start, current => current === exit, getCost);
|
||||
if (!pathCells) return [];
|
||||
const segments = getRouteSegments(pathCells, connections);
|
||||
|
|
@ -271,32 +760,88 @@ window.Routes = (function () {
|
|||
function createRoutesData(routes) {
|
||||
const pointsArray = preparePointsArray();
|
||||
|
||||
for (const {feature, cells, merged} of mergeRoutes(mainRoads)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("roads", cells, pointsArray);
|
||||
routes.push({i: routes.length, group: "roads", feature, points});
|
||||
}
|
||||
|
||||
for (const {feature, cells, merged} of mergeRoutes(secondaryRoads)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("secondary", cells, pointsArray);
|
||||
routes.push({i: routes.length, group: "secondary", feature, points});
|
||||
}
|
||||
|
||||
for (const {feature, cells, merged} of mergeRoutes(trails)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("trails", cells, pointsArray);
|
||||
routes.push({i: routes.length, group: "trails", feature, points});
|
||||
}
|
||||
|
||||
for (const {feature, cells, merged} of mergeRoutes(seaRoutes)) {
|
||||
// Process critical routes (Tier 1 & 2) - these run immediately
|
||||
for (const {feature, cells, merged, type} of mergeRoutes(majorSeaRoutes)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("searoutes", cells, pointsArray);
|
||||
routes.push({i: routes.length, group: "searoutes", feature, points});
|
||||
routes.push({i: routes.length, group: "searoutes", feature, points, type: type || "majorSea"});
|
||||
}
|
||||
|
||||
for (const {feature, cells, merged, type} of mergeRoutes(royalRoads)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("roads", cells, pointsArray);
|
||||
routes.push({i: routes.length, group: "roads", feature, points, type: type || "royal"});
|
||||
}
|
||||
|
||||
return routes;
|
||||
}
|
||||
|
||||
// Function to append background-generated routes to pack
|
||||
function appendRoutesToPack(marketRoads, localRoads, footpaths, regionalSeaRoutes) {
|
||||
const pointsArray = preparePointsArray();
|
||||
const routes = pack.routes;
|
||||
|
||||
// Tier 3: Market Roads
|
||||
for (const {feature, cells, merged} of mergeRoutes(marketRoads)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("roads", cells, pointsArray);
|
||||
const routeId = getNextId();
|
||||
routes.push({i: routeId, group: "roads", feature, points, type: "market"});
|
||||
|
||||
// Update cell routes
|
||||
for (let i = 0; i < cells.length - 1; i++) {
|
||||
addRouteConnection(cells[i], cells[i + 1], routeId);
|
||||
}
|
||||
}
|
||||
|
||||
// Tier 4: Local Roads
|
||||
for (const {feature, cells, merged} of mergeRoutes(localRoads)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("secondary", cells, pointsArray);
|
||||
const routeId = getNextId();
|
||||
routes.push({i: routeId, group: "secondary", feature, points, type: "local"});
|
||||
|
||||
for (let i = 0; i < cells.length - 1; i++) {
|
||||
addRouteConnection(cells[i], cells[i + 1], routeId);
|
||||
}
|
||||
}
|
||||
|
||||
// Tier 5: Footpaths
|
||||
for (const {feature, cells, merged} of mergeRoutes(footpaths)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("trails", cells, pointsArray);
|
||||
const routeId = getNextId();
|
||||
routes.push({i: routeId, group: "trails", feature, points, type: "footpath"});
|
||||
|
||||
for (let i = 0; i < cells.length - 1; i++) {
|
||||
addRouteConnection(cells[i], cells[i + 1], routeId);
|
||||
}
|
||||
}
|
||||
|
||||
// Regional Sea Routes
|
||||
for (const {feature, cells, merged} of mergeRoutes(regionalSeaRoutes)) {
|
||||
if (merged) continue;
|
||||
const points = getPoints("searoutes", cells, pointsArray);
|
||||
const routeId = getNextId();
|
||||
routes.push({i: routeId, group: "searoutes", feature, points, type: "regional"});
|
||||
|
||||
for (let i = 0; i < cells.length - 1; i++) {
|
||||
addRouteConnection(cells[i], cells[i + 1], routeId);
|
||||
}
|
||||
}
|
||||
|
||||
// Rebuild route links after adding new routes
|
||||
pack.cells.routes = buildLinks(pack.routes);
|
||||
}
|
||||
|
||||
function addRouteConnection(from, to, routeId) {
|
||||
const routes = pack.cells.routes || {};
|
||||
if (!routes[from]) routes[from] = {};
|
||||
routes[from][to] = routeId;
|
||||
if (!routes[to]) routes[to] = {};
|
||||
routes[to][from] = routeId;
|
||||
pack.cells.routes = routes;
|
||||
}
|
||||
|
||||
// merge routes so that the last cell of one route is the first cell of the next route
|
||||
function mergeRoutes(routes) {
|
||||
|
|
@ -322,7 +867,7 @@ window.Routes = (function () {
|
|||
}
|
||||
}
|
||||
|
||||
function createCostEvaluator({isWater, connections}) {
|
||||
function createCostEvaluator({isWater, connections, routeType = "market"}) {
|
||||
return isWater ? getWaterPathCost : getLandPathCost;
|
||||
|
||||
function getLandPathCost(current, next) {
|
||||
|
|
@ -336,8 +881,16 @@ window.Routes = (function () {
|
|||
const heightModifier = 1 + Math.max(pack.cells.h[next] - 25, 25) / 25; // [1, 3];
|
||||
const connectionModifier = connections.has(`${current}-${next}`) ? 0.5 : 1;
|
||||
const burgModifier = pack.cells.burg[next] ? 1 : 3;
|
||||
|
||||
// Medieval travel constraints
|
||||
const riverCrossingPenalty = pack.cells.r[next] && !pack.cells.burg[next] ? 1.5 : 1; // Bridges rare except at settlements
|
||||
const borderPenalty = getBorderPenalty(current, next, routeType); // Political boundaries affect some routes
|
||||
|
||||
// Apply route tier modifier
|
||||
const tierModifier = ROUTE_TIER_MODIFIERS[routeType]?.cost || 1;
|
||||
|
||||
const pathCost = distanceCost * habitabilityModifier * heightModifier * connectionModifier * burgModifier;
|
||||
const pathCost = distanceCost * habitabilityModifier * heightModifier * connectionModifier *
|
||||
burgModifier * riverCrossingPenalty * borderPenalty * tierModifier;
|
||||
return pathCost;
|
||||
}
|
||||
|
||||
|
|
@ -348,10 +901,28 @@ window.Routes = (function () {
|
|||
const distanceCost = dist2(pack.cells.p[current], pack.cells.p[next]);
|
||||
const typeModifier = ROUTE_TYPE_MODIFIERS[pack.cells.t[next]] || ROUTE_TYPE_MODIFIERS.default;
|
||||
const connectionModifier = connections.has(`${current}-${next}`) ? 0.5 : 1;
|
||||
|
||||
// Apply route tier modifier for sea routes
|
||||
const tierModifier = ROUTE_TIER_MODIFIERS[routeType]?.cost || 1;
|
||||
|
||||
const pathCost = distanceCost * typeModifier * connectionModifier;
|
||||
const pathCost = distanceCost * typeModifier * connectionModifier * tierModifier;
|
||||
return pathCost;
|
||||
}
|
||||
|
||||
function getBorderPenalty(current, next, routeType) {
|
||||
// Royal roads and major sea routes ignore borders (diplomatic/trade importance)
|
||||
if (routeType === "royal" || routeType === "majorSea") return 1;
|
||||
|
||||
// Check if crossing state border
|
||||
const currentState = pack.cells.state[current];
|
||||
const nextState = pack.cells.state[next];
|
||||
if (currentState === nextState) return 1;
|
||||
|
||||
// Higher penalty for local routes crossing borders
|
||||
if (routeType === "footpath") return 3;
|
||||
if (routeType === "local") return 2;
|
||||
return 1.5; // Market roads have moderate border penalty
|
||||
}
|
||||
}
|
||||
|
||||
function buildLinks(routes) {
|
||||
|
|
|
|||
|
|
@ -70,8 +70,13 @@ function editBiomes() {
|
|||
const b = cells.biome[i];
|
||||
biomesData.cells[b] += 1;
|
||||
biomesData.area[b] += cells.area[i];
|
||||
biomesData.rural[b] += cells.pop[i];
|
||||
if (cells.burg[i]) biomesData.urban[b] += pack.burgs[cells.burg[i]].population;
|
||||
if (cells.burg[i]) {
|
||||
// Burg represents ALL population for this cell (stored in thousands)
|
||||
biomesData.urban[b] += pack.burgs[cells.burg[i]].population;
|
||||
} else {
|
||||
// Only count cells.pop for unsettled areas (no burg present)
|
||||
biomesData.rural[b] += cells.pop[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -74,7 +74,7 @@ function overviewMilitary() {
|
|||
const states = pack.states.filter(s => s.i && !s.removed);
|
||||
|
||||
for (const s of states) {
|
||||
const population = rn((s.rural + s.urban * urbanization) * populationRate);
|
||||
const population = rn((s.rural * populationRate) + (s.urban * 1000 * urbanization));
|
||||
const getForces = u => s.military.reduce((s, r) => s + (r.u[u.name] || 0), 0);
|
||||
const total = options.military.reduce((s, u) => s + getForces(u) * u.crew, 0);
|
||||
const rate = (total / population) * 100;
|
||||
|
|
@ -146,7 +146,7 @@ function overviewMilitary() {
|
|||
u => (line.dataset[u.name] = line.querySelector(`div[data-type='${u.name}']`).innerHTML = getForces(u))
|
||||
);
|
||||
|
||||
const population = rn((s.rural + s.urban * urbanization) * populationRate);
|
||||
const population = rn((s.rural * populationRate) + (s.urban * 1000 * urbanization));
|
||||
const total = (line.dataset.total = options.military.reduce((s, u) => s + getForces(u) * u.crew, 0));
|
||||
const rate = (line.dataset.rate = (total / population) * 100);
|
||||
line.querySelector("div[data-type='total']").innerHTML = si(total);
|
||||
|
|
|
|||
|
|
@ -87,10 +87,14 @@ function editProvinces() {
|
|||
if (!p) continue;
|
||||
|
||||
provinces[p].area += cells.area[i];
|
||||
provinces[p].rural += cells.pop[i];
|
||||
if (!cells.burg[i]) continue;
|
||||
provinces[p].urban += burgs[cells.burg[i]].population;
|
||||
provinces[p].burgs.push(cells.burg[i]);
|
||||
if (cells.burg[i]) {
|
||||
// Burg represents ALL population for this cell (stored in thousands)
|
||||
provinces[p].urban += burgs[cells.burg[i]].population;
|
||||
provinces[p].burgs.push(cells.burg[i]);
|
||||
} else {
|
||||
// Only count cells.pop for unsettled areas (no burg present)
|
||||
provinces[p].rural += cells.pop[i];
|
||||
}
|
||||
}
|
||||
|
||||
provinces.forEach(p => {
|
||||
|
|
@ -1092,9 +1096,13 @@ function editProvinces() {
|
|||
data += el.dataset.color + ",";
|
||||
data += el.dataset.capital + ",";
|
||||
data += el.dataset.area + ",";
|
||||
data += el.dataset.population + ",";
|
||||
data += Math.round(provincePack.rural * populationRate) + ",";
|
||||
data += Math.round(provincePack.urban * populationRate * urbanization) + ",";
|
||||
// Rural: convert abstract points to people, Urban: already in thousands so convert to people
|
||||
const ruralPop = Math.round(provincePack.rural * populationRate);
|
||||
const urbanPop = Math.round(provincePack.urban * 1000 * urbanization);
|
||||
const totalPop = ruralPop + urbanPop;
|
||||
data += totalPop + ",";
|
||||
data += ruralPop + ",";
|
||||
data += urbanPop + ",";
|
||||
data += el.dataset.burgs + "\n";
|
||||
});
|
||||
|
||||
|
|
|
|||
|
|
@ -79,9 +79,17 @@ function editZones() {
|
|||
|
||||
const lines = filteredZones.map(({i, name, type, cells, color, hidden}) => {
|
||||
const area = getArea(d3.sum(cells.map(i => pack.cells.area[i])));
|
||||
const rural = d3.sum(cells.map(i => pack.cells.pop[i])) * populationRate;
|
||||
const urban =
|
||||
d3.sum(cells.map(i => pack.cells.burg[i]).map(b => pack.burgs[b].population)) * populationRate * urbanization;
|
||||
// Calculate population: burg population for settled cells, cells.pop for unsettled
|
||||
let rural = 0, urban = 0;
|
||||
cells.forEach(i => {
|
||||
if (pack.cells.burg[i]) {
|
||||
// Burg represents ALL population for this cell
|
||||
urban += pack.burgs[pack.cells.burg[i]].population * 1000 * urbanization;
|
||||
} else {
|
||||
// Only count cells.pop for unsettled areas
|
||||
rural += pack.cells.pop[i] * populationRate;
|
||||
}
|
||||
});
|
||||
const population = rn(rural + urban);
|
||||
const populationTip = `Total population: ${si(population)}; Rural population: ${si(
|
||||
rural
|
||||
|
|
@ -412,10 +420,19 @@ function editZones() {
|
|||
if (!landCells.length) return tip("Zone does not have any land cells, cannot change population", false, "error");
|
||||
|
||||
const burgs = pack.burgs.filter(b => !b.removed && landCells.includes(b.cell));
|
||||
const rural = rn(d3.sum(landCells.map(i => pack.cells.pop[i])) * populationRate);
|
||||
const urban = rn(
|
||||
d3.sum(landCells.map(i => pack.cells.burg[i]).map(b => pack.burgs[b].population)) * populationRate * urbanization
|
||||
);
|
||||
// Calculate population: burg population for settled cells, cells.pop for unsettled
|
||||
let rural = 0, urban = 0;
|
||||
landCells.forEach(i => {
|
||||
if (pack.cells.burg[i]) {
|
||||
// Burg represents ALL population for this cell
|
||||
urban += pack.burgs[pack.cells.burg[i]].population * 1000 * urbanization;
|
||||
} else {
|
||||
// Only count cells.pop for unsettled areas
|
||||
rural += pack.cells.pop[i] * populationRate;
|
||||
}
|
||||
});
|
||||
rural = rn(rural);
|
||||
urban = rn(urban);
|
||||
const total = rural + urban;
|
||||
const l = n => Number(n).toLocaleString();
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue