migrating all util files from js to ts

This commit is contained in:
Marc Emmanuel 2026-01-14 09:18:08 +01:00
parent 76f86497c7
commit fa493989b6
39 changed files with 3174 additions and 1523 deletions

454
src/utils/graphUtils.ts Normal file
View file

@ -0,0 +1,454 @@
import Delaunator from "delaunator";
import Alea from "alea";
import { color } from "d3";
import { byId } from "./shorthands";
import { rn } from "./numberUtils";
import { createTypedArray } from "./arrayUtils";
/**
* Get boundary points on a regular square grid
* @param {number} width - The width of the area
* @param {number} height - The height of the area
* @param {number} spacing - The spacing between points
* @returns {Array} - An array of boundary points
*/
const getBoundaryPoints = (width: number, height: number, spacing: number) => {
const offset = rn(-1 * spacing);
const bSpacing = spacing * 2;
const w = width - offset * 2;
const h = height - offset * 2;
const numberX = Math.ceil(w / bSpacing) - 1;
const numberY = Math.ceil(h / bSpacing) - 1;
const points = [];
for (let i = 0.5; i < numberX; i++) {
let x = Math.ceil((w * i) / numberX + offset);
points.push([x, offset], [x, h + offset]);
}
for (let i = 0.5; i < numberY; i++) {
let y = Math.ceil((h * i) / numberY + offset);
points.push([offset, y], [w + offset, y]);
}
return points;
}
/**
* Get points on a jittered square grid
* @param {number} width - The width of the area
* @param {number} height - The height of the area
* @param {number} spacing - The spacing between points
* @returns {Array} - An array of jittered grid points
*/
const getJitteredGrid = (width: number, height: number, spacing: number): number[][] => {
const radius = spacing / 2; // square radius
const jittering = radius * 0.9; // max deviation
const doubleJittering = jittering * 2;
const jitter = () => Math.random() * doubleJittering - jittering;
let points: number[][] = [];
for (let y = radius; y < height; y += spacing) {
for (let x = radius; x < width; x += spacing) {
const xj = Math.min(rn(x + jitter(), 2), width);
const yj = Math.min(rn(y + jitter(), 2), height);
points.push([xj, yj]);
}
}
return points;
}
/**
* Places points on a jittered grid and calculates spacing and cell counts
* @param {number} graphWidth - The width of the graph
* @param {number} graphHeight - The height of the graph
* @returns {Object} - An object containing spacing, cellsDesired, boundary points, grid points, cellsX, and cellsY
*/
const placePoints = (graphWidth: number, graphHeight: number) => {
window.TIME && console.time("placePoints");
const cellsDesired = +(byId("pointsInput")?.dataset.cells || 0);
const spacing = rn(Math.sqrt((graphWidth * graphHeight) / cellsDesired), 2); // spacing between points before jirrering
const boundary = getBoundaryPoints(graphWidth, graphHeight, spacing);
const points = getJitteredGrid(graphWidth, graphHeight, spacing); // points of jittered square grid
const cellsX = Math.floor((graphWidth + 0.5 * spacing - 1e-10) / spacing);
const cellsY = Math.floor((graphHeight + 0.5 * spacing - 1e-10) / spacing);
window.TIME && console.timeEnd("placePoints");
return {spacing, cellsDesired, boundary, points, cellsX, cellsY};
}
/**
* Checks if the grid needs to be regenerated based on desired parameters
* @param {Object} grid - The current grid object
* @param {number} expectedSeed - The expected seed value
* @param {number} graphWidth - The width of the graph
* @param {number} graphHeight - The height of the graph
* @returns {boolean} - True if the grid should be regenerated, false otherwise
*/
export const shouldRegenerateGrid = (grid: any, expectedSeed: number, graphWidth: number, graphHeight: number) => {
if (expectedSeed && expectedSeed !== grid.seed) return true;
const cellsDesired = +(byId("pointsInput")?.dataset?.cells || 0);
if (cellsDesired !== grid.cellsDesired) return true;
const newSpacing = rn(Math.sqrt((graphWidth * graphHeight) / cellsDesired), 2);
const newCellsX = Math.floor((graphWidth + 0.5 * newSpacing - 1e-10) / newSpacing);
const newCellsY = Math.floor((graphHeight + 0.5 * newSpacing - 1e-10) / newSpacing);
return grid.spacing !== newSpacing || grid.cellsX !== newCellsX || grid.cellsY !== newCellsY;
}
/**
* Generates a Voronoi grid based on jittered grid points
* @returns {Object} - The generated grid object containing spacing, cellsDesired, boundary, points, cellsX, cellsY, cells, vertices, and seed
*/
export const generateGrid = (seed: string, graphWidth: number, graphHeight: number) => {
Math.random = Alea(seed); // reset PRNG
const {spacing, cellsDesired, boundary, points, cellsX, cellsY} = placePoints(graphWidth, graphHeight);
const {cells, vertices} = calculateVoronoi(points, boundary);
return {spacing, cellsDesired, boundary, points, cellsX, cellsY, cells, vertices, seed};
}
/**
* Calculates the Voronoi diagram from given points and boundary
* @param {Array} points - The array of points for Voronoi calculation
* @param {Array} boundary - The boundary points to clip the Voronoi cells
* @returns {Object} - An object containing Voronoi cells and vertices
*/
export const calculateVoronoi = (points: number[][], boundary: number[][]) => {
window.TIME && console.time("calculateDelaunay");
const allPoints = points.concat(boundary);
const delaunay = Delaunator.from(allPoints);
window.TIME && console.timeEnd("calculateDelaunay");
window.TIME && console.time("calculateVoronoi");
const voronoi = new window.Voronoi(delaunay, allPoints, points.length);
const cells = voronoi.cells;
cells.i = createTypedArray({maxValue: points.length, length: points.length}).map((_, i) => i); // array of indexes
const vertices = voronoi.vertices;
window.TIME && console.timeEnd("calculateVoronoi");
return {cells, vertices};
}
/**
* Returns a cell index on a regular square grid based on x and y coordinates
* @param {number} x - The x coordinate
* @param {number} y - The y coordinate
* @param {Object} grid - The grid object containing spacing, cellsX, and cellsY
* @returns {number} - The index of the cell in the grid
*/
export const findGridCell = (x: number, y: number, grid: any): number => {
return (
Math.floor(Math.min(y / grid.spacing, grid.cellsY - 1)) * grid.cellsX +
Math.floor(Math.min(x / grid.spacing, grid.cellsX - 1))
);
}
/**
* return array of cell indexes in radius on a regular square grid
* @param {number} x - The x coordinate
* @param {number} y - The y coordinate
* @param {number} radius - The search radius
* @param {Object} grid - The grid object containing spacing, cellsX, and cellsY
* @returns {Array} - An array of cell indexes within the specified radius
*/
export const findGridAll = (x: number, y: number, radius: number, grid: any): number[] => {
const c = grid.cells.c;
let r = Math.floor(radius / grid.spacing);
let found = [findGridCell(x, y, grid)];
if (!r || radius === 1) return found;
if (r > 0) found = found.concat(c[found[0]]);
if (r > 1) {
let frontier = c[found[0]];
while (r > 1) {
let cycle = frontier.slice();
frontier = [];
cycle.forEach(function (s: number) {
c[s].forEach(function (e: number) {
if (found.indexOf(e) !== -1) return;
found.push(e);
frontier.push(e);
});
});
r--;
}
}
return found;
}
/**
* Returns the index of the packed cell containing the given x and y coordinates
* @param {number} x - The x coordinate
* @param {number} y - The y coordinate
* @param {number} radius - The search radius (default is Infinity)
* @returns {number|undefined} - The index of the found cell or undefined if not found
*/
export const findClosestCell = (x: number, y: number, radius = Infinity, packedGraph: any): number | undefined => {
if (!packedGraph.cells?.q) return;
const found = packedGraph.cells.q.find(x, y, radius);
return found ? found[2] : undefined;
}
/**
* Returns an array of packed cell indexes within a specified radius from given x and y coordinates
* @param {number} x - The x coordinate
* @param {number} y - The y coordinate
*/
export const findAllCellsInRadius = (x: number, y: number, radius: number, packedGraph: any): number[] => {
const found = packedGraph.cells.q.findAll(x, y, radius);
return found.map((r: any) => r[2]);
}
/**
* Returns the polygon points for a packed cell given its index
* @param {number} i - The index of the packed cell
* @returns {Array} - An array of polygon points for the specified cell
*/
export const getPackPolygon = (cellIndex: number, packedGraph: any) => {
return packedGraph.cells.v[cellIndex].map((v: number) => packedGraph.vertices.p[v]);
}
/**
* Returns the polygon points for a grid cell given its index
* @param {number} i - The index of the grid cell
* @returns {Array} - An array of polygon points for the specified grid cell
*/
export const getGridPolygon = (i: number, grid: any) => {
return grid.cells.v[i].map((v: number) => grid.vertices.p[v]);
}
/**
* mbostock's poissonDiscSampler implementation
* Generates points using Poisson-disc sampling within a specified rectangle
* @param {number} x0 - The minimum x coordinate of the rectangle
* @param {number} y0 - The minimum y coordinate of the rectangle
* @param {number} x1 - The maximum x coordinate of the rectangle
* @param {number} y1 - The maximum y coordinate of the rectangle
* @param {number} r - The minimum distance between points
* @param {number} k - The number of attempts before rejection (default is 3)
* @yields {Array} - An array containing the x and y coordinates of a generated point
*/
export function* poissonDiscSampler(x0: number, y0: number, x1: number, y1: number, r: number, k = 3) {
if (!(x1 >= x0) || !(y1 >= y0) || !(r > 0)) throw new Error();
const width = x1 - x0;
const height = y1 - y0;
const r2 = r * r;
const r2_3 = 3 * r2;
const cellSize = r * Math.SQRT1_2;
const gridWidth = Math.ceil(width / cellSize);
const gridHeight = Math.ceil(height / cellSize);
const grid = new Array(gridWidth * gridHeight);
const queue: [number, number][] = [];
function far(x: number, y: number) {
const i = (x / cellSize) | 0;
const j = (y / cellSize) | 0;
const i0 = Math.max(i - 2, 0);
const j0 = Math.max(j - 2, 0);
const i1 = Math.min(i + 3, gridWidth);
const j1 = Math.min(j + 3, gridHeight);
for (let j = j0; j < j1; ++j) {
const o = j * gridWidth;
for (let i = i0; i < i1; ++i) {
const s = grid[o + i];
if (s) {
const dx = s[0] - x;
const dy = s[1] - y;
if (dx * dx + dy * dy < r2) return false;
}
}
}
return true;
}
function sample(x: number, y: number) {
const point: [number, number] = [x, y];
queue.push((grid[gridWidth * ((y / cellSize) | 0) + ((x / cellSize) | 0)] = point));
return [x + x0, y + y0];
}
yield sample(width / 2, height / 2);
pick: while (queue.length) {
const i = (Math.random() * queue.length) | 0;
const parent = queue[i];
for (let j = 0; j < k; ++j) {
const a = 2 * Math.PI * Math.random();
const r = Math.sqrt(Math.random() * r2_3 + r2);
const x = parent[0] + r * Math.cos(a);
const y = parent[1] + r * Math.sin(a);
if (0 <= x && x < width && 0 <= y && y < height && far(x, y)) {
yield sample(x, y);
continue pick;
}
}
const r = queue.pop();
if (r !== undefined && i < queue.length) queue[i] = r;
}
}
/**
* Checks if a packed cell is land based on its height
* @param {number} i - The index of the packed cell
* @returns {boolean} - True if the cell is land, false otherwise
*/
export const isLand = (i: number, packedGraph: any) => {
return packedGraph.cells.h[i] >= 20;
}
/**
* Checks if a packed cell is water based on its height
* @param {number} i - The index of the packed cell
* @returns {boolean} - True if the cell is water, false otherwise
*/
export const isWater = (i: number, packedGraph: any) => {
return packedGraph.cells.h[i] < 20;
}
export const findAllInQuadtree = (x: number, y: number, radius: number, quadtree: any) => {
const radiusSearchInit = (t: any, radius: number) => {
t.result = [];
(t.x0 = t.x - radius), (t.y0 = t.y - radius);
(t.x3 = t.x + radius), (t.y3 = t.y + radius);
t.radius = radius * radius;
};
const radiusSearchVisit = (t: any, d2: number) => {
t.node.data.scanned = true;
if (d2 < t.radius) {
do {
t.result.push(t.node.data);
t.node.data.selected = true;
} while ((t.node = t.node.next));
}
};
class Quad {
node: any;
x0: number;
y0: number;
x1: number;
y1: number;
constructor(node: any, x0: number, y0: number, x1: number, y1: number) {
this.node = node;
this.x0 = x0;
this.y0 = y0;
this.x1 = x1;
this.y1 = y1;
}
}
const t: any = {x, y, x0: quadtree._x0, y0: quadtree._y0, x3: quadtree._x1, y3: quadtree._y1, quads: [], node: quadtree._root};
if (t.node) t.quads.push(new Quad(t.node, t.x0, t.y0, t.x3, t.y3));
radiusSearchInit(t, radius);
var i = 0;
while ((t.q = t.quads.pop())) {
i++;
// Stop searching if this quadrant cant contain a closer node.
if (
!(t.node = t.q.node) ||
(t.x1 = t.q.x0) > t.x3 ||
(t.y1 = t.q.y0) > t.y3 ||
(t.x2 = t.q.x1) < t.x0 ||
(t.y2 = t.q.y1) < t.y0
)
continue;
// Bisect the current quadrant.
if (t.node.length) {
t.node.explored = true;
var xm: number = (t.x1 + t.x2) / 2,
ym: number = (t.y1 + t.y2) / 2;
t.quads.push(
new Quad(t.node[3], xm, ym, t.x2, t.y2),
new Quad(t.node[2], t.x1, ym, xm, t.y2),
new Quad(t.node[1], xm, t.y1, t.x2, ym),
new Quad(t.node[0], t.x1, t.y1, xm, ym)
);
// Visit the closest quadrant first.
if ((t.i = (+(y >= ym) << 1) | +(x >= xm))) {
t.q = t.quads[t.quads.length - 1];
t.quads[t.quads.length - 1] = t.quads[t.quads.length - 1 - t.i];
t.quads[t.quads.length - 1 - t.i] = t.q;
}
}
// Visit this point. (Visiting coincident points isnt necessary!)
else {
var dx = x - +quadtree._x.call(null, t.node.data),
dy = y - +quadtree._y.call(null, t.node.data),
d2 = dx * dx + dy * dy;
radiusSearchVisit(t, d2);
}
}
return t.result;
}
// draw raster heightmap preview (not used in main generation)
/**
* Draws a raster heightmap preview based on given heights and rendering options
* @param {Object} options - The options for drawing the heightmap
* @param {Array} options.heights - The array of height values
* @param {number} options.width - The width of the heightmap
* @param {number} options.height - The height of the heightmap
* @param {Function} options.scheme - The color scheme function for rendering heights
* @param {boolean} options.renderOcean - Whether to render ocean heights
* @returns {string} - A data URL representing the drawn heightmap image
*/
export const drawHeights = ({heights, width, height, scheme, renderOcean}: {heights: number[], width: number, height: number, scheme: (value: number) => string, renderOcean: boolean}) => {
const canvas = document.createElement("canvas");
canvas.width = width;
canvas.height = height;
const ctx = canvas.getContext("2d")!;
const imageData = ctx.createImageData(width, height);
const getHeight = (height: number) => (height < 20 ? (renderOcean ? height : 0) : height);
for (let i = 0; i < heights.length; i++) {
const colorScheme = scheme(1 - getHeight(heights[i]) / 100);
const {r, g, b} = color(colorScheme)!.rgb();
const n = i * 4;
imageData.data[n] = r;
imageData.data[n + 1] = g;
imageData.data[n + 2] = b;
imageData.data[n + 3] = 255;
}
ctx.putImageData(imageData, 0, 0);
return canvas.toDataURL("image/png");
}
declare global {
interface Window {
TIME: boolean;
Voronoi: any;
shouldRegenerateGrid: typeof shouldRegenerateGrid;
generateGrid: typeof generateGrid;
findCell: typeof findClosestCell;
findGridCell: typeof findGridCell;
findGridAll: typeof findGridAll;
calculateVoronoi: typeof calculateVoronoi;
findAll: typeof findAllCellsInRadius;
getPackPolygon: typeof getPackPolygon;
getGridPolygon: typeof getGridPolygon;
poissonDiscSampler: typeof poissonDiscSampler;
isLand: typeof isLand;
isWater: typeof isWater;
findAllInQuadtree: typeof findAllInQuadtree;
drawHeights: typeof drawHeights;
}
}