class Voronoi { /** * Creates a Voronoi diagram from the given Delaunator, a list of points, and the number of points. The Voronoi diagram is constructed using (I think) the {@link https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm |Bowyer-Watson Algorithm} * The {@link https://github.com/mapbox/delaunator/ |Delaunator} library uses {@link https://en.wikipedia.org/wiki/Doubly_connected_edge_list |half-edges} to represent the relationship between points and triangles. * @param {{triangles: Uint32Array, halfedges: Int32Array}} delaunay A {@link https://github.com/mapbox/delaunator/blob/master/index.js |Delaunator} instance. * @param {[number, number][]} points A list of coordinates. * @param {number} pointsN The number of points. */ constructor(delaunay, points, pointsN) { this.delaunay = delaunay; this.points = points; this.pointsN = pointsN; this.cells = { v: [], c: [], b: [] }; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell this.vertices = { p: [], v: [], c: [] }; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells // Half-edges are the indices into the delaunator outputs: // delaunay.triangles[e] gives the point ID where the half-edge starts // delaunay.halfedges[e] returns either the opposite half-edge in the adjacent triangle, or -1 if there's not an adjacent triangle. for (let e = 0; e < this.delaunay.triangles.length; e++) { const p = this.delaunay.triangles[this.nextHalfedge(e)]; if (p < this.pointsN && !this.cells.c[p]) { const edges = this.edgesAroundPoint(e); this.cells.v[p] = edges.map(e => this.triangleOfEdge(e)); // cell: adjacent vertex this.cells.c[p] = edges.map(e => this.delaunay.triangles[e]).filter(c => c < this.pointsN); // cell: adjacent valid cells this.cells.b[p] = edges.length > this.cells.c[p].length ? 1 : 0; // cell: is border } const t = this.triangleOfEdge(e); if (!this.vertices.p[t]) { this.vertices.p[t] = this.triangleCenter(t); // vertex: coordinates this.vertices.v[t] = this.trianglesAdjacentToTriangle(t); // vertex: adjacent vertices this.vertices.c[t] = this.pointsOfTriangle(t); // vertex: adjacent cells } } } /** * Gets the IDs of the points comprising the given triangle. Taken from {@link https://mapbox.github.io/delaunator/#triangle-to-points| the Delaunator docs.} * @param {number} t The index of the triangle * @returns {[number, number, number]} The IDs of the points comprising the given triangle. */ pointsOfTriangle(t) { return this.edgesOfTriangle(t).map(edge => this.delaunay.triangles[edge]); } /** * Identifies what triangles are adjacent to the given triangle. Taken from {@link https://mapbox.github.io/delaunator/#triangle-to-triangles| the Delaunator docs.} * @param {number} t The index of the triangle * @returns {number[]} The indices of the triangles that share half-edges with this triangle. */ trianglesAdjacentToTriangle(t) { let triangles = []; for (let edge of this.edgesOfTriangle(t)) { let opposite = this.delaunay.halfedges[edge]; triangles.push(this.triangleOfEdge(opposite)); } return triangles; } /** * Gets the indices of all the incoming and outgoing half-edges that touch the given point. Taken from {@link https://mapbox.github.io/delaunator/#point-to-edges| the Delaunator docs.} * @param {number} start The index of an incoming half-edge that leads to the desired point * @returns {number[]} The indices of all half-edges (incoming or outgoing) that touch the point. */ edgesAroundPoint(start) { const result = []; let incoming = start; do { result.push(incoming); const outgoing = this.nextHalfedge(incoming); incoming = this.delaunay.halfedges[outgoing]; } while (incoming !== -1 && incoming !== start && result.length < 20); return result; } /** * Returns the center of the triangle located at the given index. * @param {number} t The index of the triangle * @returns {[number, number]} */ triangleCenter(t) { let vertices = this.pointsOfTriangle(t).map(p => this.points[p]); return this.circumcenter(vertices[0], vertices[1], vertices[2]); } /** * Retrieves all of the half-edges for a specific triangle `t`. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.} * @param {number} t The index of the triangle * @returns {[number, number, number]} The edges of the triangle. */ edgesOfTriangle(t) { return [3 * t, 3 * t + 1, 3 * t + 2]; } /** * Enables lookup of a triangle, given one of the half-edges of that triangle. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.} * @param {number} e The index of the edge * @returns {number} The index of the triangle */ triangleOfEdge(e) { return Math.floor(e / 3); } /** * Moves to the next half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.} * @param {number} e The index of the current half edge * @returns {number} The index of the next half edge */ nextHalfedge(e) { return (e % 3 === 2) ? e - 2 : e + 1; } /** * Moves to the previous half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.} * @param {number} e The index of the current half edge * @returns {number} The index of the previous half edge */ prevHalfedge(e) { return (e % 3 === 0) ? e + 2 : e - 1; } /** * Finds the circumcenter of the triangle identified by points a, b, and c. Taken from {@link https://en.wikipedia.org/wiki/Circumscribed_circle#Circumcenter_coordinates| Wikipedia} * @param {[number, number]} a The coordinates of the first point of the triangle * @param {[number, number]} b The coordinates of the second point of the triangle * @param {[number, number]} c The coordinates of the third point of the triangle * @return {[number, number]} The coordinates of the circumcenter of the triangle. */ circumcenter(a, b, c) { const [ax, ay] = a; const [bx, by] = b; const [cx, cy] = c; const ad = ax * ax + ay * ay; const bd = bx * bx + by * by; const cd = cx * cx + cy * cy; const D = 2 * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by)); return [ Math.floor(1 / D * (ad * (by - cy) + bd * (cy - ay) + cd * (ay - by))), Math.floor(1 / D * (ad * (cx - bx) + bd * (ax - cx) + cd * (bx - ax))) ]; } }