(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global.Rivers = factory()); }(this, (function () {'use strict'; const generate = function(changeHeights = true) { TIME && console.time('generateRivers'); Math.random = aleaPRNG(seed); const cells = pack.cells, p = cells.p, features = pack.features; const riversData = []; // rivers data cells.fl = new Uint16Array(cells.i.length); // water flux array cells.r = new Uint16Array(cells.i.length); // rivers array cells.conf = new Uint8Array(cells.i.length); // confluences array let riverNext = 1; // first river id is 1 markupLand(); const h = alterHeights(); removeStoredLakeData(); resolveDepressions(h); drainWater(); defineRivers(); Lakes.cleanupLakeData(); if (changeHeights) cells.h = Uint8Array.from(h); // apply changed heights as basic one TIME && console.timeEnd('generateRivers'); // build distance field in cells from water (cells.t) function markupLand() { const q = t => cells.i.filter(i => cells.t[i] === t); for (let t = 2, queue = q(t); queue.length; t++, queue = q(t)) { queue.forEach(i => cells.c[i].forEach(c => { if (!cells.t[c]) cells.t[c] = t+1; })); } } // height with added t value to make map less depressed function alterHeights() { const h = Array.from(cells.h) .map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + cells.t[i] / 100) .map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + d3.mean(cells.c[i].map(c => cells.t[c])) / 10000); return h; } function removeStoredLakeData() { features.forEach(f => { delete f.flux; delete f.inlets; delete f.outlet; delete f.height; }); } function drainWater() { const MIN_FLUX_TO_FORM_RIVER = 30; const land = cells.i.filter(i => h[i] >= 20).sort((a,b) => h[b] - h[a]); const lakeOutCells = Lakes.setClimateData(h); land.forEach(function(i) { cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation const x = p[i][0], y = p[i][1]; // create lake outlet if flux > evaporation const lakes = !lakeOutCells[i] ? [] : features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation); for (const lake of lakes) { const lakeCell = cells.c[i].find(c => h[c] < 20 && cells.f[c] === lake.i); cells.fl[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet // allow chain lakes to retain identity if (cells.r[lakeCell] !== lake.river) { const sameRiver = cells.c[lakeCell].some(c => cells.r[c] === lake.river); if (sameRiver) { cells.r[lakeCell] = lake.river; riversData.push({river: lake.river, cell: lakeCell, x: p[lakeCell][0], y: p[lakeCell][1], flux: cells.fl[lakeCell]}); } else { cells.r[lakeCell] = riverNext; riversData.push({river: riverNext, cell: lakeCell, x: p[lakeCell][0], y: p[lakeCell][1], flux: cells.fl[lakeCell]}); riverNext++; } } lake.outlet = cells.r[lakeCell]; flowDown(i, cells.fl[i], cells.fl[lakeCell], lake.outlet); } // assign all tributary rivers to outlet basin for (let outlet = lakes[0]?.outlet, l = 0; l < lakes.length; l++) { lakes[l].inlets?.forEach(fork => riversData.find(r => r.river === fork).parent = outlet); } // near-border cell: pour water out of the screen if (cells.b[i] && cells.r[i]) { const to = []; const min = Math.min(y, graphHeight - y, x, graphWidth - x); if (min === y) {to[0] = x; to[1] = 0;} else if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else if (min === x) {to[0] = 0; to[1] = y;} else if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;} riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1], flux: cells.fl[i]}); return; } // downhill cell (make sure it's not in the source lake) const min = lakeOutCells[i] ? cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c])).sort((a, b) => h[a] - h[b])[0] : cells.c[i].sort((a, b) => h[a] - h[b])[0]; if (cells.fl[i] < MIN_FLUX_TO_FORM_RIVER) { if (h[min] >= 20) cells.fl[min] += cells.fl[i]; return; // flux is too small to operate as river } // proclaim a new river if (!cells.r[i]) { cells.r[i] = riverNext; riversData.push({river: riverNext, cell: i, x, y, flux: cells.fl[i]}); riverNext++; } flowDown(min, cells.fl[min], cells.fl[i], cells.r[i], i); }); } function flowDown(toCell, toFlux, fromFlux, river, fromCell = 0) { if (cells.r[toCell]) { // downhill cell already has river assigned if (toFlux < fromFlux) { cells.conf[toCell] = cells.fl[toCell]; // mark confluence if (h[toCell] >= 20) riversData.find(r => r.river === cells.r[toCell]).parent = river; // min river is a tributary of current river cells.r[toCell] = river; // re-assign river if downhill part has less flux } else { cells.conf[toCell] += fromFlux; // mark confluence if (h[toCell] >= 20) riversData.find(r => r.river === river).parent = cells.r[toCell]; // current river is a tributary of min river } } else cells.r[toCell] = river; // assign the river to the downhill cell if (h[toCell] < 20) { // pour water to the water body const haven = fromCell ? cells.haven[fromCell] : toCell; riversData.push({river, cell: haven, x: p[toCell][0], y: p[toCell][1], flux: fromFlux}); const waterBody = features[cells.f[toCell]]; if (waterBody.type === "lake") { if (!waterBody.river || fromFlux > waterBody.enteringFlux) { waterBody.river = river; waterBody.enteringFlux = fromFlux; } waterBody.flux = waterBody.flux + fromFlux; waterBody.inlets ? waterBody.inlets.push(river) : waterBody.inlets = [river]; } } else { // propagate flux and add next river segment cells.fl[toCell] += fromFlux; riversData.push({river, cell: toCell, x: p[toCell][0], y: p[toCell][1], flux: fromFlux}); } } function defineRivers() { pack.rivers = []; // rivers data const riverPaths = []; for (let r = 1; r <= riverNext; r++) { const riverSegments = riversData.filter(d => d.river === r); if (riverSegments.length > 2) { const source = riverSegments[0].cell; const mouth = riverSegments[riverSegments.length-2].cell; const widthFactor = rn(.8 + Math.random() * .4, 1); // river width modifier [.8, 1.2] const sourceWidth = cells.h[source] >= 20 ? .1 : rn(Math.min(Math.max((cells.fl[source] / 500) ** .4, .5), 1.7), 2); const riverMeandered = addMeandering(riverSegments, sourceWidth * 10, .5); const [path, length, offset] = getPath(riverMeandered, widthFactor, sourceWidth); riverPaths.push([path, r]); const parent = riverSegments[0].parent || 0; const width = rn(offset ** 2, 2); // mounth width in km const discharge = last(riverSegments).flux; // in m3/s pack.rivers.push({i:r, source, mouth, discharge, length, width, widthFactor, sourceWidth, parent}); } else { // remove too short rivers riverSegments.filter(s => cells.r[s.cell] === r).forEach(s => cells.r[s.cell] = 0); } } // draw rivers rivers.html(riverPaths.map(d => ``).join("")); } } // depression filling algorithm (for a correct water flux modeling) const resolveDepressions = function(h) { const {cells, features} = pack; const ITERATIONS = 150; const lakes = features.filter(f => f.type === "lake"); lakes.forEach(l => { const uniqueCells = new Set(); l.vertices.forEach(v => pack.vertices.c[v].forEach(c => cells.h[c] >= 20 && uniqueCells.add(c))); l.shoreline = [...uniqueCells]; }); const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells land.sort((a,b) => h[b] - h[a]); // highest cells go first let depressions = Infinity; for (let l = 0; depressions && l < ITERATIONS; l++) { depressions = 0; for (const l of lakes) { const minHeight = d3.min(l.shoreline.map(s => h[s])); if (minHeight >= 100 || l.height > minHeight) continue; l.height = minHeight + 1; depressions++; } for (const i of land) { const minHeight = d3.min(cells.c[i].map(c => cells.t[c] > 0 ? h[c] : pack.features[cells.f[c]].height || h[c])); if (minHeight >= 100 || h[i] > minHeight) continue; h[i] = minHeight + 1; depressions++; } } depressions && ERROR && console.error("Heightmap is depressed. Issues with rivers expected. Remove depressed areas to resolve"); } // add more river points on 1/3 and 2/3 of length const addMeandering = function(segments, width = 1, meandering = .5) { const riverMeandered = []; // to store enhanced segments for (let s = 0; s < segments.length; s++, width++) { const sX = segments[s].x, sY = segments[s].y; // segment start coordinates const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence riverMeandered.push([sX, sY, c]); if (s+1 === segments.length) break; // do not meander last segment const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates const angle = Math.atan2(eY - sY, eX - sX); const sin = Math.sin(angle), cos = Math.cos(angle); const meander = meandering + 1 / width + Math.random() * Math.max(meandering - width / 100, 0); const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2; // square distance between segment start and end if (width < 10 && (dist2 > 64 || (dist2 > 36 && segments.length < 6))) { // if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment const p1x = (sX * 2 + eX) / 3 + -sin * meander; const p1y = (sY * 2 + eY) / 3 + cos * meander; const p2x = (sX + eX * 2) / 3 + sin * meander; const p2y = (sY + eY * 2) / 3 + cos * meander; riverMeandered.push([p1x, p1y], [p2x, p2y]); } else if (dist2 > 25 || segments.length < 6) { // if dist is medium or river is small add 1 extra middlepoint const p1x = (sX + eX) / 2 + -sin * meander; const p1y = (sY + eY) / 2 + cos * meander; riverMeandered.push([p1x, p1y]); } } return riverMeandered; } const getPath = function(points, widthFactor = 1, sourceWidth = .1) { let offset, extraOffset = sourceWidth; // starting river width (to make river source visible) const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length const widening = 1000 + riverLength * 30; const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon const last = points.length - 1; const factor = riverLength / points.length; // first point let x = points[0][0], y = points[0][1], c; let angle = Math.atan2(y - points[1][1], x - points[1][0]); let sin = Math.sin(angle), cos = Math.cos(angle); let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset; riverPointsLeft.push([xLeft, yLeft]); let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset; riverPointsRight.unshift([xRight, yRight]); // middle points for (let p = 1; p < last; p++) { x = points[p][0], y = points[p][1], c = points[p][2] || 0; const xPrev = points[p-1][0], yPrev = points[p - 1][1]; const xNext = points[p+1][0], yNext = points[p + 1][1]; angle = Math.atan2(yPrev - yNext, xPrev - xNext); sin = Math.sin(angle), cos = Math.cos(angle); offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * widthFactor) + extraOffset; const confOffset = Math.atan(c * 5 / widening); extraOffset += confOffset; xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset); riverPointsLeft.push([xLeft, yLeft]); xRight = x + sin * offset, yRight = y + -cos * offset; riverPointsRight.unshift([xRight, yRight]); } // end point x = points[last][0], y = points[last][1], c = points[last][2]; if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x); sin = Math.sin(angle), cos = Math.cos(angle); xLeft = x + -sin * offset, yLeft = y + cos * offset; riverPointsLeft.push([xLeft, yLeft]); xRight = x + sin * offset, yRight = y + -cos * offset; riverPointsRight.unshift([xRight, yRight]); // generate polygon path and return lineGen.curve(d3.curveCatmullRom.alpha(0.1)); const right = lineGen(riverPointsRight); let left = lineGen(riverPointsLeft); left = left.substring(left.indexOf("C")); return [round(right + left, 2), rn(riverLength, 2), offset]; } const specify = function() { const rivers = pack.rivers; if (!rivers.length) return; Math.random = aleaPRNG(seed); const tresholdElement = Math.ceil(rivers.length * .15); const smallLength = rivers.map(r => r.length || 0).sort((a, b) => a-b)[tresholdElement]; const smallType = {"Creek":9, "River":3, "Brook":3, "Stream":1}; // weighted small river types for (const r of rivers) { r.basin = getBasin(r.i); r.name = getName(r.mouth); const small = r.length < smallLength; r.type = r.parent && !(r.i%6) ? small ? "Branch" : "Fork" : small ? rw(smallType) : "River"; } } const getName = function(cell) { return Names.getCulture(pack.cells.culture[cell]); } // remove river and all its tributaries const remove = function(id) { const cells = pack.cells; const riversToRemove = pack.rivers.filter(r => r.basin === id).map(r => r.i); riversToRemove.forEach(r => rivers.select("#river"+r).remove()); cells.r.forEach((r, i) => { if (!r || !riversToRemove.includes(r)) return; cells.r[i] = 0; cells.fl[i] = grid.cells.prec[cells.g[i]]; cells.conf[i] = 0; }); pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i)); } const getBasin = function(r) { const parent = pack.rivers.find(river => river.i === r)?.parent; if (!parent || r === parent) return r; return getBasin(parent); } return {generate, resolveDepressions, addMeandering, getPath, specify, getName, getBasin, remove}; })));