import * as d3 from "d3"; import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation"; import {TIME} from "config/logging"; import {INT8_MAX} from "config/constants"; import {aleaPRNG} from "scripts/aleaPRNG"; import {getFeatureVertices} from "scripts/connectVertices"; import {createTypedArray, unique} from "utils/arrayUtils"; import {dist2} from "utils/functionUtils"; import {clipPoly} from "utils/lineUtils"; import {rn} from "utils/numberUtils"; const {UNMARKED, LAND_COAST, WATER_COAST, LANDLOCKED, DEEPER_WATER} = DISTANCE_FIELD; // define features (oceans, lakes, islands) export function markupGridFeatures(neighbors: IGraphCells["c"], borderCells: IGraphCells["b"], heights: Uint8Array) { TIME && console.time("markupGridFeatures"); Math.random = aleaPRNG(seed); // get the same result on heightmap edit in Erase mode const gridCellsNumber = borderCells.length; const featureIds = new Uint16Array(gridCellsNumber); // starts from 1 const distanceField = new Int8Array(gridCellsNumber); const features: TGridFeatures = [0]; const queue = [0]; for (let featureId = 1; queue[0] !== -1; featureId++) { const firstCell = queue[0]; featureIds[firstCell] = featureId; const land = heights[firstCell] >= MIN_LAND_HEIGHT; let border = false; // set true if feature touches map edge while (queue.length) { const cellId = queue.pop()!; if (borderCells[cellId]) border = true; for (const neighborId of neighbors[cellId]) { const isNeibLand = heights[neighborId] >= MIN_LAND_HEIGHT; if (land === isNeibLand && featureIds[neighborId] === UNMARKED) { featureIds[neighborId] = featureId; queue.push(neighborId); } else if (land && !isNeibLand) { distanceField[cellId] = LAND_COAST; distanceField[neighborId] = WATER_COAST; } } } const type = land ? "island" : border ? "ocean" : "lake"; features.push({i: featureId, land, border, type}); queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell } // markup deep ocean cells const dfOceanMarked = markup({distanceField, neighbors, start: DEEPER_WATER, increment: -1, limit: -10}); TIME && console.timeEnd("markupGridFeatures"); return {featureIds, distanceField: dfOceanMarked, features}; } // define features (oceans, lakes, islands) add related details export function markupPackFeatures( grid: IGrid, vertices: IGraphVertices, cells: Pick ) { TIME && console.time("markupPackFeatures"); const gridCellsNumber = grid.cells.h.length; const packCellsNumber = cells.c.length; const features: TPackFeatures = [0]; const featureIds = new Uint16Array(packCellsNumber); // ids of features, starts from 1 const distanceField = new Int8Array(packCellsNumber); // distance from coast; 1 = land along coast; -1 = water along coast const haven = createTypedArray({maxValue: packCellsNumber, length: packCellsNumber}); // haven (opposite water cell) const harbor = new Uint8Array(packCellsNumber); // harbor (number of adjacent water cells) const defineHaven = (cellId: number) => { const waterCells = cells.c[cellId].filter(c => cells.h[c] < MIN_LAND_HEIGHT); const distances = waterCells.map(c => dist2(cells.p[cellId], cells.p[c])); const closest = distances.indexOf(Math.min.apply(Math, distances)); haven[cellId] = waterCells[closest]; harbor[cellId] = waterCells.length; }; const queue = [0]; for (let featureId = 1; queue[0] !== -1; featureId++) { const firstCell = queue[0]; featureIds[firstCell] = featureId; // assign feature number const land = cells.h[firstCell] >= MIN_LAND_HEIGHT; let border = false; // true if feature touches map border let cellNumber = 1; // count cells in a feature while (queue.length) { const cellId = queue.pop()!; if (cells.b[cellId]) border = true; for (const neighborId of cells.c[cellId]) { const isNeibLand = cells.h[neighborId] >= MIN_LAND_HEIGHT; if (land && !isNeibLand) { distanceField[cellId] = LAND_COAST; distanceField[neighborId] = WATER_COAST; if (!haven[cellId]) defineHaven(cellId); } else if (land && isNeibLand) { if (distanceField[neighborId] === UNMARKED && distanceField[cellId] === LAND_COAST) distanceField[neighborId] = LANDLOCKED; else if (distanceField[cellId] === UNMARKED && distanceField[neighborId] === LAND_COAST) distanceField[cellId] = LANDLOCKED; } if (!featureIds[neighborId] && land === isNeibLand) { queue.push(neighborId); featureIds[neighborId] = featureId; cellNumber++; } } } const featureVertices = getFeatureVertices({firstCell, vertices, cells, featureIds, featureId}); const points = clipPoly(featureVertices.map(vertex => vertices.p[vertex])); const area = d3.polygonArea(points); // feature perimiter area const feature = addFeature({ vertices, heights: cells.h, features, featureIds, firstCell, land, border, featureVertices, featureId, cellNumber, gridCellsNumber, area }); features.push(feature); queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell } // markup pack land cells const dfLandMarked = markup({distanceField, neighbors: cells.c, start: LANDLOCKED + 1, increment: 1}); TIME && console.timeEnd("markupPackFeatures"); return {features, featureIds, distanceField: dfLandMarked, haven, harbor}; } function addFeature({ vertices, heights, features, featureIds, firstCell, land, border, featureVertices, featureId, cellNumber, gridCellsNumber, area }: { vertices: IGraphVertices; heights: Uint8Array; features: TPackFeatures; featureIds: Uint16Array; firstCell: number; land: boolean; border: boolean; featureVertices: number[]; featureId: number; cellNumber: number; gridCellsNumber: number; area: number; }) { const OCEAN_MIN_SIZE = gridCellsNumber / 25; const SEA_MIN_SIZE = gridCellsNumber / 1000; const CONTINENT_MIN_SIZE = gridCellsNumber / 10; const ISLAND_MIN_SIZE = gridCellsNumber / 1000; const absArea = Math.abs(rn(area)); if (land) return addIsland(); if (border) return addOcean(); return addLake(); function addIsland() { const group = defineIslandGroup(); const feature: IPackFeatureIsland = { i: featureId, type: "island", group, land: true, border, cells: cellNumber, firstCell, vertices: featureVertices, area: absArea }; return feature; } function addOcean() { const group = defineOceanGroup(); const feature: IPackFeatureOcean = { i: featureId, type: "ocean", group, land: false, border: false, cells: cellNumber, firstCell, vertices: featureVertices, area: absArea }; return feature; } function addLake() { const group = "freshwater"; // temp, to be defined later const name = ""; // temp, to be defined later // ensure lake ring is clockwise (to form a hole) const lakeVertices = area > 0 ? featureVertices.reverse() : featureVertices; const shoreline = getShoreline(); // land cells around lake const height = getLakeElevation(); function getShoreline() { const isLand = (cellId: number) => heights[cellId] >= MIN_LAND_HEIGHT; const cellsAround = lakeVertices.map(vertex => vertices.c[vertex].filter(isLand)).flat(); return unique(cellsAround); } function getLakeElevation() { const MIN_ELEVATION_DELTA = 0.1; const minShoreHeight = d3.min(shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT; return rn(minShoreHeight - MIN_ELEVATION_DELTA, 2); } const feature: IPackFeatureLake = { i: featureId, type: "lake", group, name, land: false, border: false, cells: cellNumber, firstCell, vertices: lakeVertices, shoreline: shoreline, height, area: absArea }; return feature; } function defineOceanGroup() { if (cellNumber > OCEAN_MIN_SIZE) return "ocean"; if (cellNumber > SEA_MIN_SIZE) return "sea"; return "gulf"; } function defineIslandGroup() { const prevFeature = features[featureIds[firstCell - 1]]; if (prevFeature && prevFeature.type === "lake") return "lake_island"; if (cellNumber > CONTINENT_MIN_SIZE) return "continent"; if (cellNumber > ISLAND_MIN_SIZE) return "island"; return "isle"; } } // calculate distance to coast for every cell function markup({ distanceField, neighbors, start, increment, limit = INT8_MAX }: { distanceField: Int8Array; neighbors: number[][]; start: number; increment: number; limit?: number; }) { for (let distance = start, marked = Infinity; marked > 0 && distance > limit; distance += increment) { marked = 0; const prevDistance = distance - increment; for (let cellId = 0; cellId < neighbors.length; cellId++) { if (distanceField[cellId] !== prevDistance) continue; for (const neighborId of neighbors[cellId]) { if (distanceField[neighborId] !== UNMARKED) continue; distanceField[neighborId] = distance; marked++; } } } return distanceField; }