"use strict"; window.Submap = (function () { const isWater = (pack, id) => pack.cells.h[id] < 20; const inMap = (x, y) => x > 0 && x < graphWidth && y > 0 && y < graphHeight; /* generate new map based on an existing one (resampling parentMap) parentMap: {seed, grid, pack} from original map options = { projection: f(Number,Number)->[Number, Number] function to calculate new coordinates inverse: g(Number,Number)->[Number, Number] inverse of f depressRivers: Bool carve out riverbeds? smoothHeightMap: Bool run smooth filter on heights addLakesInDepressions: call FMG original funtion on heightmap lockMarkers: Bool Auto lock all copied markers lockBurgs: Bool Auto lock all copied burgs } */ function resample(parentMap, options) { const projection = options.projection; const inverse = options.inverse; const stage = s => INFO && console.info("SUBMAP:", s); const timeStart = performance.now(); invokeActiveZooming(); // copy seed seed = parentMap.seed; Math.random = aleaPRNG(seed); INFO && console.group("SubMap with seed: " + seed); applyGraphSize(); grid = generateGrid(); drawScaleBar(scaleBar, scale); fitScaleBar(scaleBar, svgWidth, svgHeight); const resampler = (points, qtree, f) => { for (const [i, [x, y]] of points.entries()) { const [tx, ty] = inverse(x, y); const oldid = qtree.find(tx, ty, Infinity)[2]; f(i, oldid); } }; stage("Resampling heightmap, temperature and precipitation"); // resample heightmap from old WorldState const n = grid.points.length; grid.cells.h = new Uint8Array(n); // heightmap grid.cells.temp = new Int8Array(n); // temperature grid.cells.prec = new Uint8Array(n); // precipitation const reverseGridMap = new Uint32Array(n); // cellmap from new -> oldcell const oldGrid = parentMap.grid; // build cache old -> [newcelllist] const forwardGridMap = parentMap.grid.points.map(_ => []); resampler(grid.points, parentMap.pack.cells.q, (id, oldid) => { const cid = parentMap.pack.cells.g[oldid]; grid.cells.h[id] = oldGrid.cells.h[cid]; grid.cells.temp[id] = oldGrid.cells.temp[cid]; grid.cells.prec[id] = oldGrid.cells.prec[cid]; if (options.depressRivers) forwardGridMap[cid].push(id); reverseGridMap[id] = cid; }); // TODO: add smooth/noise function for h, temp, prec n times // smooth heightmap // smoothing should never change cell type (land->water or water->land) if (options.smoothHeightMap) { const gcells = grid.cells; gcells.h.forEach((h, i) => { const hs = gcells.c[i].map(c => gcells.h[c]); hs.push(h); gcells.h[i] = h >= 20 ? Math.max(d3.mean(hs), 20) : Math.min(d3.mean(hs), 19); }); } if (options.depressRivers) { stage("Generating riverbeds"); const rbeds = new Uint16Array(grid.cells.i.length); // and erode riverbeds parentMap.pack.rivers.forEach(r => r.cells.forEach(oldpc => { if (oldpc < 0) return; // ignore out-of-map marker (-1) const oldc = parentMap.pack.cells.g[oldpc]; const targetCells = forwardGridMap[oldc]; if (!targetCells) throw "TargetCell shouldn't be empty"; targetCells.forEach(c => { if (grid.cells.h[c] < 20) return; rbeds[c] = 1; }); }) ); // raise every land cell a bit except riverbeds grid.cells.h.forEach((h, i) => { if (rbeds[i] || h < 20) return; grid.cells.h[i] = Math.min(h + 2, 100); }); } stage("Detect features, ocean and generating lakes"); Features.markupGrid(); addLakesInDeepDepressions(); openNearSeaLakes(); OceanLayers(); calculateMapCoordinates(); calculateTemperatures(); generatePrecipitation(); stage("Cell cleanup"); reGraph(); // remove misclassified cells stage("Define coastline"); Features.markupPack(); createDefaultRuler(); // Packed Graph const oldCells = parentMap.pack.cells; const forwardMap = parentMap.pack.cells.p.map(_ => []); // old -> [newcelllist] const pn = pack.cells.i.length; const cells = pack.cells; cells.culture = new Uint16Array(pn); cells.state = new Uint16Array(pn); cells.burg = new Uint16Array(pn); cells.religion = new Uint16Array(pn); cells.province = new Uint16Array(pn); stage("Resampling culture, state and religion map"); for (const [id, gridCellId] of cells.g.entries()) { const oldGridId = reverseGridMap[gridCellId]; if (oldGridId === undefined) { console.error("Can not find old cell id", reverseGridMap, "in", gridCellId); continue; } // find old parent's children const oldChildren = oldCells.i.filter(oid => oldCells.g[oid] == oldGridId); let oldid; // matching cell on the original map if (!oldChildren.length) { // it *must* be a (deleted) deep ocean cell if (!oldGrid.cells.h[oldGridId] < 20) { console.error(`Warning, ${gridCellId} should be water cell, not ${oldGrid.cells.h[oldGridId]}`); continue; } // find replacement: closest water cell const [ox, oy] = cells.p[id]; const [tx, ty] = inverse(x, y); oldid = oldCells.q.find(tx, ty, Infinity)[2]; if (!oldid) { console.warn("Warning, no id found in quad", id, "parent", gridCellId); continue; } } else { // find closest children (packcell) on the parent map const distance = x => (x[0] - cells.p[id][0]) ** 2 + (x[1] - cells.p[id][1]) ** 2; let d = Infinity; oldChildren.forEach(oid => { // this should be always true, unless some algo modded the height! if (isWater(parentMap.pack, oid) !== isWater(pack, id)) { console.warn(`cell sank because of addLakesInDepressions: ${oid}`); } const [oldpx, oldpy] = oldCells.p[oid]; const nd = distance(projection(oldpx, oldpy)); if (isNaN(nd)) { console.error("Distance is not a number!", "Old point:", oldpx, oldpy); } if (nd < d) [d, oldid] = [nd, oid]; }); if (oldid === undefined) { console.warn("Warning, no match for", id, "(parent:", gridCellId, ")"); continue; } } if (isWater(pack, id) !== isWater(parentMap.pack, oldid)) { WARN && console.warn("Type discrepancy detected:", id, oldid, `${pack.cells.t[id]} != ${oldCells.t[oldid]}`); } cells.culture[id] = oldCells.culture[oldid]; cells.state[id] = oldCells.state[oldid]; cells.religion[id] = oldCells.religion[oldid]; cells.province[id] = oldCells.province[oldid]; // reverseMap.set(id, oldid) forwardMap[oldid].push(id); } stage("Regenerating river network"); Rivers.generate(); // biome calculation based on (resampled) grid.cells.temp and prec // it's safe to recalculate. stage("Regenerating Biome"); Biomes.define(); // recalculate suitability and population // TODO: normalize according to the base-map rankCells(); stage("Porting Cultures"); pack.cultures = parentMap.pack.cultures; // fix culture centers const validCultures = new Set(pack.cells.culture); pack.cultures.forEach((c, i) => { if (!i) return; // ignore wildlands if (!validCultures.has(i)) { c.removed = true; c.center = null; return; } const newCenters = forwardMap[c.center]; c.center = newCenters.length ? newCenters[0] : pack.cells.culture.findIndex(x => x === i); }); stage("Porting and locking burgs"); copyBurgs(parentMap, projection, options); // transfer states, mark states without land as removed. stage("Porting states"); const validStates = new Set(pack.cells.state); pack.states = parentMap.pack.states; // keep valid states and neighbors only pack.states.forEach((s, i) => { if (!s.i || s.removed) return; // ignore removed and neutrals if (!validStates.has(i)) s.removed = true; s.neighbors = s.neighbors.filter(n => validStates.has(n)); // find center s.center = pack.burgs[s.capital].cell ? pack.burgs[s.capital].cell // capital is the best bet : pack.cells.state.findIndex(x => x === i); // otherwise use the first valid cell }); States.getPoles(); // transfer provinces, mark provinces without land as removed. stage("Porting provinces"); const validProvinces = new Set(pack.cells.province); pack.provinces = parentMap.pack.provinces; // mark uneccesary provinces pack.provinces.forEach((p, i) => { if (!p || p.removed) return; if (!validProvinces.has(i)) { p.removed = true; return; } const newCenters = forwardMap[p.center]; p.center = newCenters.length ? newCenters[0] : pack.cells.province.findIndex(x => x === i); }); Provinces.getPoles(); stage("Regenerating routes network"); regenerateRoutes(); Rivers.specify(); Features.specify(); stage("Porting military"); for (const s of pack.states) { if (!s.military) continue; for (const m of s.military) { [m.x, m.y] = projection(m.x, m.y); [m.bx, m.by] = projection(m.bx, m.by); const cc = forwardMap[m.cell]; m.cell = cc && cc.length ? cc[0] : null; } s.military = s.military.filter(m => m.cell).map((m, i) => ({...m, i})); } stage("Copying markers"); for (const m of pack.markers) { const [x, y] = projection(m.x, m.y); if (!inMap(x, y)) { Markers.deleteMarker(m.i); } else { m.x = x; m.y = y; m.cell = findCell(x, y); if (options.lockMarkers) m.lock = true; } } if (layerIsOn("toggleMarkers")) drawMarkers(); stage("Regenerating Zones"); Zones.generate(); Names.getMapName(); stage("Restoring Notes"); notes = parentMap.notes; stage("Submap done"); WARN && console.warn(`TOTAL: ${rn((performance.now() - timeStart) / 1000, 2)}s`); showStatistics(); INFO && console.groupEnd("Generated Map " + seed); } /* find the nearest cell accepted by filter f *and* having at * least one *neighbor* fulfilling filter g, up to cell-distance `max` * returns [cellid, neighbor] tuple or undefined if no such cell. * accepts coordinates (x, y) */ const findNearest = (f, g, max = 3) => (px, py) => { const d2 = c => (px - pack.cells.p[c][0]) ** 2 + (py - pack.cells.p[c][0]) ** 2; const startCell = findCell(px, py); const tested = new Set([startCell]); // ignore analyzed cells const kernel = (cs, level) => { const [bestf, bestg] = cs.filter(f).reduce( ([cf, cg], c) => { const neighbors = pack.cells.c[c]; const betterg = neighbors.filter(g).reduce((u, x) => (d2(x) < d2(u) ? x : u)); if (cf === undefined) return [c, betterg]; return betterg && d2(cf) < d2(c) ? [c, betterg] : [cf, cg]; }, [undefined, undefined] ); if (bestf && bestg) return [bestf, bestg]; // no suitable pair found, retry with next ring const targets = new Set(cs.map(c => pack.cells.c[c]).flat()); const ring = Array.from(targets).filter(nc => !tested.has(nc)); if (level >= max || !ring.length) return [undefined, undefined]; ring.forEach(c => tested.add(c)); return kernel(ring, level + 1); }; const pair = kernel([startCell], 1); return pair; }; function copyBurgs(parentMap, projection, options) { const cells = pack.cells; pack.burgs = parentMap.pack.burgs; // remap burgs to the best new cell pack.burgs.forEach((b, id) => { if (id == 0) return; // skip empty city of neturals [b.x, b.y] = projection(b.x, b.y); b.population = b.population * options.scale; // adjust for populationRate change // disable out-of-map (removed) burgs if (!inMap(b.x, b.y)) { b.removed = true; b.cell = null; return; } const cityCell = findCell(b.x, b.y); let searchFunc; const isFreeLand = c => cells.t[c] === 1 && !cells.burg[c]; const nearCoast = c => cells.t[c] === -1; // check if we need to relocate the burg if (cells.burg[cityCell]) // already occupied searchFunc = findNearest(isFreeLand, _ => true, 3); if (isWater(pack, cityCell) || b.port) // burg is in water or port searchFunc = findNearest(isFreeLand, nearCoast, 6); if (searchFunc) { const [newCell, neighbor] = searchFunc(b.x, b.y); if (!newCell) { WARN && console.warn(`Can not relocate Burg: ${b.name} sunk and destroyed. :-(`); b.cell = null; b.removed = true; return; } [b.x, b.y] = b.port ? getCloseToEdgePoint(newCell, neighbor) : cells.p[newCell]; if (b.port) b.port = cells.f[neighbor]; // copy feature number b.cell = newCell; if (b.port && !isWater(pack, neighbor)) console.error("betrayal! negihbor must be water!", b); } else { b.cell = cityCell; } if (b.i && !b.lock) b.lock = options.lockBurgs; cells.burg[b.cell] = id; }); } function getCloseToEdgePoint(cell1, cell2) { const {cells, vertices} = pack; const [x0, y0] = cells.p[cell1]; const commonVertices = cells.v[cell1].filter(vertex => vertices.c[vertex].some(cell => cell === cell2)); const [x1, y1] = vertices.p[commonVertices[0]]; const [x2, y2] = vertices.p[commonVertices[1]]; const xEdge = (x1 + x2) / 2; const yEdge = (y1 + y2) / 2; const x = rn(x0 + 0.95 * (xEdge - x0), 2); const y = rn(y0 + 0.95 * (yEdge - y0), 2); return [x, y]; } // export return {resample, findNearest}; })();