"use strict"; // data is an array of cell indexes, routeLen is the distance (in actual metres/feet), isRiver should be true for rivers, false otherwise function showElevationProfile(data, routeLen, isRiver) { byId("epScaleRange").on("change", draw); byId("epCurve").on("change", draw); byId("epSave").on("click", downloadCSV); $("#elevationProfile").dialog({ title: "Elevation profile", resizable: false, close: closeElevationProfile, position: {my: "left top", at: "left+20 bottom-500", of: window, collision: "fit"} }); // prevent river graphs from showing rivers as flowing uphill - remember the general slope let slope = 0; if (isRiver) { const firstCellHeight = pack.cells.h[data.at(0)]; const lastCellHeight = pack.cells.h[data.at(-1)]; if (firstCellHeight < lastCellHeight) { slope = 1; // up-hill } else if (firstCellHeight > lastCellHeight) { slope = -1; // down-hill } } const chartWidth = window.innerWidth - 200; const chartHeight = 300; const xOffset = 80; const yOffset = 80; const biomesHeight = 10; let lastBurgIndex = 0; let lastBurgCell = 0; let burgCount = 0; let chartData = {biome: [], burg: [], cell: [], height: [], mi: 1000000, ma: 0, mih: 100, mah: 0, points: []}; for (let i = 0, prevB = 0, prevH = -1; i < data.length; i++) { let cell = data[i]; let h = pack.cells.h[cell]; if (h < 20) { const f = pack.features[pack.cells.f[cell]]; if (f.type === "lake") h = f.height; else h = 20; } // check for river up-hill if (prevH != -1) { if (isRiver) { if (slope == 1 && h < prevH) h = prevH; else if (slope == 0 && h != prevH) h = prevH; else if (slope == -1 && h > prevH) h = prevH; } } prevH = h; let b = pack.cells.burg[cell]; if (b == prevB) b = 0; else prevB = b; if (b) { burgCount++; lastBurgIndex = i; lastBurgCell = cell; } chartData.biome[i] = pack.cells.biome[cell]; chartData.burg[i] = b; chartData.cell[i] = cell; let sh = getHeight(h); chartData.height[i] = parseInt(sh.substr(0, sh.indexOf(" "))); chartData.mih = Math.min(chartData.mih, h); chartData.mah = Math.max(chartData.mah, h); chartData.mi = Math.min(chartData.mi, chartData.height[i]); chartData.ma = Math.max(chartData.ma, chartData.height[i]); } if (lastBurgIndex != 0 && lastBurgCell == chartData.cell[data.length - 1] && lastBurgIndex < data.length - 1) { chartData.burg[data.length - 1] = chartData.burg[lastBurgIndex]; chartData.burg[lastBurgIndex] = 0; } draw(); function downloadCSV() { let csv = "Id,x,y,lat,lon,Cell,Height,Height value,Population,Burg,Burg population,Biome,Biome color,Culture,Culture color,Religion,Religion color,Province,Province color,State,State color\n"; // headers for (let k = 0; k < chartData.points.length; k++) { let cell = chartData.cell[k]; let burg = pack.cells.burg[cell]; let biome = pack.cells.biome[cell]; let culture = pack.cells.culture[cell]; let religion = pack.cells.religion[cell]; let province = pack.cells.province[cell]; let state = pack.cells.state[cell]; let pop = pack.cells.pop[cell]; let h = pack.cells.h[cell]; csv += k + 1 + ","; const [x, y] = pack.cells.p[data[k]]; csv += x + ","; csv += y + ","; const lat = getLatitude(y, 2); const lon = getLongitude(x, 2); csv += lat + ","; csv += lon + ","; csv += cell + ","; csv += getHeight(h) + ","; csv += h + ","; csv += rn(pop * populationRate) + ","; if (burg) { csv += pack.burgs[burg].name + ","; csv += pack.burgs[burg].population * populationRate * urbanization + ","; } else { csv += ",0,"; } csv += biomesData.name[biome] + ","; csv += biomesData.color[biome] + ","; csv += pack.cultures[culture].name + ","; csv += pack.cultures[culture].color + ","; csv += pack.religions[religion].name + ","; csv += pack.religions[religion].color + ","; csv += pack.provinces[province].name + ","; csv += pack.provinces[province].color + ","; csv += pack.states[state].name + ","; csv += pack.states[state].color + ","; csv += "\n"; } const name = getFileName("elevation profile") + ".csv"; downloadFile(csv, name); } function draw() { chartData.points = []; let heightScale = 100 / parseInt(epScaleRange.value); heightScale *= 0.9; // curves cause the heights to go slightly higher, adjust here const xscale = d3.scaleLinear().domain([0, data.length]).range([0, chartWidth]); const yscale = d3 .scaleLinear() .domain([0, chartData.ma * heightScale]) .range([chartHeight, 0]); for (let i = 0; i < data.length; i++) { chartData.points.push([xscale(i) + xOffset, yscale(chartData.height[i]) + yOffset]); } byId("elevationGraph").innerHTML = ""; const chart = d3 .select("#elevationGraph") .append("svg") .attr("width", chartWidth + 120) .attr("height", chartHeight + yOffset + biomesHeight) .attr("id", "elevationSVG") .attr("class", "epbackground"); // arrow-head definition chart .append("defs") .append("marker") .attr("id", "arrowhead") .attr("orient", "auto") .attr("markerWidth", "2") .attr("markerHeight", "4") .attr("refX", "0.1") .attr("refY", "2") .append("path") .attr("d", "M0,0 V4 L2,2 Z") .attr("fill", "darkgray"); const colors = getColorScheme("natural"); const landdef = chart .select("defs") .append("linearGradient") .attr("id", "landdef") .attr("x1", "0%") .attr("y1", "0%") .attr("x2", "0%") .attr("y2", "100%"); if (chartData.mah == chartData.mih) { landdef .append("stop") .attr("offset", "0%") .attr("style", "stop-color:" + getColor(chartData.mih, colors) + ";stop-opacity:1"); landdef .append("stop") .attr("offset", "100%") .attr("style", "stop-color:" + getColor(chartData.mah, colors) + ";stop-opacity:1"); } else { for (let k = chartData.mah; k >= chartData.mih; k--) { let perc = 1 - (k - chartData.mih) / (chartData.mah - chartData.mih); landdef .append("stop") .attr("offset", perc * 100 + "%") .attr("style", "stop-color:" + getColor(k, colors) + ";stop-opacity:1"); } } // land let curve = d3.line().curve(d3.curveBasis); // see https://github.com/d3/d3-shape#curves let epCurveIndex = parseInt(epCurve.selectedIndex); switch (epCurveIndex) { case 0: curve = d3.line().curve(d3.curveLinear); break; case 1: curve = d3.line().curve(d3.curveBasis); break; case 2: curve = d3.line().curve(d3.curveBundle.beta(1)); break; case 3: curve = d3.line().curve(d3.curveCatmullRom.alpha(0.5)); break; case 4: curve = d3.line().curve(d3.curveMonotoneX); break; case 5: curve = d3.line().curve(d3.curveNatural); break; } // copy the points so that we can add extra straight pieces, else we get curves at the ends of the chart let extra = chartData.points.slice(); let path = curve(extra); // this completes the right-hand side and bottom of our land "polygon" path += " L" + parseInt(xscale(extra.length) + +xOffset) + "," + parseInt(extra[extra.length - 1][1]); path += " L" + parseInt(xscale(extra.length) + +xOffset) + "," + parseInt(yscale(0) + +yOffset); path += " L" + parseInt(xscale(0) + +xOffset) + "," + parseInt(yscale(0) + +yOffset); path += "Z"; chart .append("g") .attr("id", "epland") .append("path") .attr("d", path) .attr("stroke", "purple") .attr("stroke-width", "0") .attr("fill", "url(#landdef)"); // biome / heights let g = chart.append("g").attr("id", "epbiomes"); const hu = heightUnit.value; for (let k = 0; k < chartData.points.length; k++) { const x = chartData.points[k][0]; const y = yOffset + chartHeight; const c = biomesData.color[chartData.biome[k]]; const cell = chartData.cell[k]; const culture = pack.cells.culture[cell]; const religion = pack.cells.religion[cell]; const province = pack.cells.province[cell]; const state = pack.cells.state[cell]; let pop = pack.cells.pop[cell]; if (chartData.burg[k]) { pop += pack.burgs[chartData.burg[k]].population * urbanization; } const populationDesc = rn(pop * populationRate); const provinceDesc = province ? ", " + pack.provinces[province].name : ""; const dataTip = biomesData.name[chartData.biome[k]] + provinceDesc + ", " + pack.states[state].name + ", " + pack.religions[religion].name + ", " + pack.cultures[culture].name + " (height: " + chartData.height[k] + " " + hu + ", population " + populationDesc + ", cell " + chartData.cell[k] + ")"; g.append("rect") .attr("stroke", c) .attr("fill", c) .attr("x", x) .attr("y", y) .attr("width", xscale(1)) .attr("height", biomesHeight) .attr("data-tip", dataTip); } const xAxis = d3 .axisBottom(xscale) .ticks(10) .tickFormat(function (d) { return rn((d / chartData.points.length) * routeLen) + " " + distanceUnitInput.value; }); const yAxis = d3 .axisLeft(yscale) .ticks(5) .tickFormat(function (d) { return d + " " + hu; }); const xGrid = d3.axisBottom(xscale).ticks(10).tickSize(-chartHeight).tickFormat(""); const yGrid = d3.axisLeft(yscale).ticks(5).tickSize(-chartWidth).tickFormat(""); chart .append("g") .attr("id", "epxaxis") .attr("transform", "translate(" + xOffset + "," + parseInt(chartHeight + +yOffset + 20) + ")") .call(xAxis) .selectAll("text") .style("text-anchor", "center"); chart .append("g") .attr("id", "epyaxis") .attr("transform", "translate(" + parseInt(+xOffset - 10) + "," + parseInt(+yOffset) + ")") .call(yAxis); // add the X gridlines chart .append("g") .attr("id", "epxgrid") .attr("class", "epgrid") .attr("stroke-dasharray", "4 1") .attr("transform", "translate(" + xOffset + "," + parseInt(chartHeight + +yOffset) + ")") .call(xGrid); // add the Y gridlines chart .append("g") .attr("id", "epygrid") .attr("class", "epgrid") .attr("stroke-dasharray", "4 1") .attr("transform", "translate(" + xOffset + "," + yOffset + ")") .call(yGrid); // draw city labels - try to avoid putting labels over one another g = chart.append("g").attr("id", "epburglabels"); let y1 = 0; const add = 15; let xwidth = chartData.points[1][0] - chartData.points[0][0]; for (let k = 0; k < chartData.points.length; k++) { if (chartData.burg[k] > 0) { let b = chartData.burg[k]; let x1 = chartData.points[k][0]; // left side of graph by default if (k > 0) x1 += xwidth / 2; // center it if not first if (k == chartData.points.length - 1) x1 = chartWidth + xOffset; // right part of graph y1 += add; if (y1 >= yOffset) y1 = add; // burg name g.append("text") .attr("id", "ep" + b) .attr("class", "epburglabel") .attr("x", x1) .attr("y", y1) .attr("text-anchor", "middle"); byId("ep" + b).innerHTML = pack.burgs[b].name; // arrow from burg name to graph line g.append("path") .attr("id", "eparrow" + b) .attr( "d", "M" + x1.toString() + "," + (y1 + 3).toString() + "L" + x1.toString() + "," + parseInt(chartData.points[k][1] - 3).toString() ) .attr("stroke", "darkgray") .attr("fill", "lightgray") .attr("stroke-width", "1") .attr("marker-end", "url(#arrowhead)"); } } } function closeElevationProfile() { byId("epScaleRange").removeEventListener("change", draw); byId("epCurve").removeEventListener("change", draw); byId("epSave").removeEventListener("click", downloadCSV); byId("elevationGraph").innerHTML = ""; modules.elevation = false; } }