"use strict"; // FMG utils related to graph // add boundary points to pseudo-clip voronoi cells function getBoundaryPoints(width, height, spacing) { const offset = rn(-1 * spacing); const bSpacing = spacing * 2; const w = width - offset * 2; const h = height - offset * 2; const numberX = Math.ceil(w / bSpacing) - 1; const numberY = Math.ceil(h / bSpacing) - 1; let points = []; for (let i = 0.5; i < numberX; i++) { let x = Math.ceil((w * i) / numberX + offset); points.push([x, offset], [x, h + offset]); } for (let i = 0.5; i < numberY; i++) { let y = Math.ceil((h * i) / numberY + offset); points.push([offset, y], [w + offset, y]); } return points; } // get points on a regular square grid and jitter them a bit function getJitteredGrid(width, height, spacing) { const radius = spacing / 2; // square radius const jittering = radius * 0.9; // max deviation const doubleJittering = jittering * 2; const jitter = () => Math.random() * doubleJittering - jittering; let points = []; for (let y = radius; y < height; y += spacing) { for (let x = radius; x < width; x += spacing) { const xj = Math.min(rn(x + jitter(), 2), width); const yj = Math.min(rn(y + jitter(), 2), height); points.push([xj, yj]); } } return points; } // return cell index on a regular square grid function findGridCell(x, y) { return Math.floor(Math.min(y / grid.spacing, grid.cellsY - 1)) * grid.cellsX + Math.floor(Math.min(x / grid.spacing, grid.cellsX - 1)); } // return array of cell indexes in radius on a regular square grid function findGridAll(x, y, radius) { const c = grid.cells.c; let r = Math.floor(radius / grid.spacing); let found = [findGridCell(x, y)]; if (!r || radius === 1) return found; if (r > 0) found = found.concat(c[found[0]]); if (r > 1) { let frontier = c[found[0]]; while (r > 1) { let cycle = frontier.slice(); frontier = []; cycle.forEach(function (s) { c[s].forEach(function (e) { if (found.indexOf(e) !== -1) return; found.push(e); frontier.push(e); }); }); r--; } } return found; } // return closest pack points quadtree datum function find(x, y, radius = Infinity) { return pack.cells.q.find(x, y, radius); } // return closest cell index function findCell(x, y, radius = Infinity) { const found = pack.cells.q.find(x, y, radius); return found ? found[2] : undefined; } // return array of cell indexes in radius function findAll(x, y, radius) { const found = pack.cells.q.findAll(x, y, radius); return found.map(r => r[2]); } // get polygon points for packed cells knowing cell id function getPackPolygon(i) { return pack.cells.v[i].map(v => pack.vertices.p[v]); } // get polygon points for initial cells knowing cell id function getGridPolygon(i) { return grid.cells.v[i].map(v => grid.vertices.p[v]); } // mbostock's poissonDiscSampler function* poissonDiscSampler(x0, y0, x1, y1, r, k = 3) { if (!(x1 >= x0) || !(y1 >= y0) || !(r > 0)) throw new Error(); const width = x1 - x0; const height = y1 - y0; const r2 = r * r; const r2_3 = 3 * r2; const cellSize = r * Math.SQRT1_2; const gridWidth = Math.ceil(width / cellSize); const gridHeight = Math.ceil(height / cellSize); const grid = new Array(gridWidth * gridHeight); const queue = []; function far(x, y) { const i = (x / cellSize) | 0; const j = (y / cellSize) | 0; const i0 = Math.max(i - 2, 0); const j0 = Math.max(j - 2, 0); const i1 = Math.min(i + 3, gridWidth); const j1 = Math.min(j + 3, gridHeight); for (let j = j0; j < j1; ++j) { const o = j * gridWidth; for (let i = i0; i < i1; ++i) { const s = grid[o + i]; if (s) { const dx = s[0] - x; const dy = s[1] - y; if (dx * dx + dy * dy < r2) return false; } } } return true; } function sample(x, y) { queue.push((grid[gridWidth * ((y / cellSize) | 0) + ((x / cellSize) | 0)] = [x, y])); return [x + x0, y + y0]; } yield sample(width / 2, height / 2); pick: while (queue.length) { const i = (Math.random() * queue.length) | 0; const parent = queue[i]; for (let j = 0; j < k; ++j) { const a = 2 * Math.PI * Math.random(); const r = Math.sqrt(Math.random() * r2_3 + r2); const x = parent[0] + r * Math.cos(a); const y = parent[1] + r * Math.sin(a); if (0 <= x && x < width && 0 <= y && y < height && far(x, y)) { yield sample(x, y); continue pick; } } const r = queue.pop(); if (i < queue.length) queue[i] = r; } } // filter land cells function isLand(i) { return pack.cells.h[i] >= 20; } // filter water cells function isWater(i) { return pack.cells.h[i] < 20; } // findAll d3.quandtree search from https://bl.ocks.org/lwthatcher/b41479725e0ff2277c7ac90df2de2b5e void (function addFindAll() { const Quad = function (node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; }; const tree_filter = function (x, y, radius) { var t = {x, y, x0: this._x0, y0: this._y0, x3: this._x1, y3: this._y1, quads: [], node: this._root}; if (t.node) { t.quads.push(new Quad(t.node, t.x0, t.y0, t.x3, t.y3)); } radiusSearchInit(t, radius); var i = 0; while ((t.q = t.quads.pop())) { i++; // Stop searching if this quadrant can’t contain a closer node. if (!(t.node = t.q.node) || (t.x1 = t.q.x0) > t.x3 || (t.y1 = t.q.y0) > t.y3 || (t.x2 = t.q.x1) < t.x0 || (t.y2 = t.q.y1) < t.y0) continue; // Bisect the current quadrant. if (t.node.length) { t.node.explored = true; var xm = (t.x1 + t.x2) / 2, ym = (t.y1 + t.y2) / 2; t.quads.push( new Quad(t.node[3], xm, ym, t.x2, t.y2), new Quad(t.node[2], t.x1, ym, xm, t.y2), new Quad(t.node[1], xm, t.y1, t.x2, ym), new Quad(t.node[0], t.x1, t.y1, xm, ym) ); // Visit the closest quadrant first. if ((t.i = ((y >= ym) << 1) | (x >= xm))) { t.q = t.quads[t.quads.length - 1]; t.quads[t.quads.length - 1] = t.quads[t.quads.length - 1 - t.i]; t.quads[t.quads.length - 1 - t.i] = t.q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, t.node.data), dy = y - +this._y.call(null, t.node.data), d2 = dx * dx + dy * dy; radiusSearchVisit(t, d2); } } return t.result; }; d3.quadtree.prototype.findAll = tree_filter; var radiusSearchInit = function (t, radius) { t.result = []; (t.x0 = t.x - radius), (t.y0 = t.y - radius); (t.x3 = t.x + radius), (t.y3 = t.y + radius); t.radius = radius * radius; }; var radiusSearchVisit = function (t, d2) { t.node.data.scanned = true; if (d2 < t.radius) { do { t.result.push(t.node.data); t.node.data.selected = true; } while ((t.node = t.node.next)); } }; })(); // helper function non-used for the generation function drawCellsValue(data) { debug.selectAll("text").remove(); debug .selectAll("text") .data(data) .enter() .append("text") .attr("x", (d, i) => pack.cells.p[i][0]) .attr("y", (d, i) => pack.cells.p[i][1]) .text(d => d); } // helper function non-used for the generation function drawPolygons(data) { const max = d3.max(data), min = d3.min(data), scheme = getColorScheme(); data = data.map(d => 1 - normalize(d, min, max)); debug.selectAll("polygon").remove(); debug .selectAll("polygon") .data(data) .enter() .append("polygon") .attr("points", (d, i) => getPackPolygon(i)) .attr("fill", d => scheme(d)) .attr("stroke", d => scheme(d)); }