"use strict"; export function fromTemplate(grid, templateId, config, utils) { const { heightmapTemplates, aleaPRNG } = utils; const templateString = heightmapTemplates[templateId]?.template || ""; const steps = templateString.split("\n"); if (!steps.length) throw new Error(`Heightmap template: no steps. Template: ${templateId}. Steps: ${steps}`); const { cellsDesired, cells, points } = grid; let heights = cells.h ? Uint8Array.from(cells.h) : createTypedArray({ maxValue: 100, length: points.length }); const blobPower = getBlobPower(cellsDesired); const linePower = getLinePower(cellsDesired); // Set up PRNG if seed is provided if (config.seed !== undefined) { Math.random = aleaPRNG(config.seed); } for (const step of steps) { const elements = step.trim().split(" "); if (elements.length < 2) throw new Error(`Heightmap template: steps < 2. Template: ${templateId}. Step: ${elements}`); heights = addStep(heights, grid, blobPower, linePower, utils, ...elements); } return heights; } export async function fromPrecreated(grid, imageId, config, utils) { // This function requires browser-specific Canvas API and Image loading // It should be handled by the viewer layer, not the headless engine throw new Error("fromPrecreated requires browser environment - should be handled by viewer layer"); } export async function generate(grid, config, utils) { const { TIME, aleaPRNG } = utils; TIME && console.time("defineHeightmap"); const templateId = config.heightmap.templateId; // Set up PRNG if seed is provided if (config.seed !== undefined) { Math.random = aleaPRNG(config.seed); } const { heightmapTemplates } = utils; const isTemplate = templateId in heightmapTemplates; if (!isTemplate) { throw new Error(`Template "${templateId}" not found. Available templates: ${Object.keys(heightmapTemplates).join(', ')}`); } const heights = fromTemplate(grid, templateId, config, utils); TIME && console.timeEnd("defineHeightmap"); return heights; } function addStep(heights, grid, blobPower, linePower, utils, tool, a2, a3, a4, a5) { if (tool === "Hill") return addHill(heights, grid, blobPower, utils, a2, a3, a4, a5); if (tool === "Pit") return addPit(heights, grid, blobPower, utils, a2, a3, a4, a5); if (tool === "Range") return addRange(heights, grid, linePower, utils, a2, a3, a4, a5); if (tool === "Trough") return addTrough(heights, grid, linePower, utils, a2, a3, a4, a5); if (tool === "Strait") return addStrait(heights, grid, utils, a2, a3); if (tool === "Mask") return mask(heights, grid, a2); if (tool === "Invert") return invert(heights, grid, a2, a3); if (tool === "Add") return modify(heights, a3, +a2, 1); if (tool === "Multiply") return modify(heights, a3, 0, +a2); if (tool === "Smooth") return smooth(heights, grid, utils, a2); return heights; } function getBlobPower(cells) { const blobPowerMap = { 1000: 0.93, 2000: 0.95, 5000: 0.97, 10000: 0.98, 20000: 0.99, 30000: 0.991, 40000: 0.993, 50000: 0.994, 60000: 0.995, 70000: 0.9955, 80000: 0.996, 90000: 0.9964, 100000: 0.9973 }; return blobPowerMap[cells] || 0.98; } function getLinePower(cells) { const linePowerMap = { 1000: 0.75, 2000: 0.77, 5000: 0.79, 10000: 0.81, 20000: 0.82, 30000: 0.83, 40000: 0.84, 50000: 0.86, 60000: 0.87, 70000: 0.88, 80000: 0.91, 90000: 0.92, 100000: 0.93 }; return linePowerMap[cells] || 0.81; } function addHill(heights, grid, blobPower, utils, count, height, rangeX, rangeY) { const { getNumberInRange, findGridCell, lim } = utils; const graphWidth = grid.cellsX; const graphHeight = grid.cellsY; count = getNumberInRange(count); let newHeights = new Uint8Array(heights); while (count > 0) { addOneHill(); count--; } function addOneHill() { const change = new Uint8Array(heights.length); let limit = 0; let start; let h = lim(getNumberInRange(height)); do { const x = getPointInRange(rangeX, graphWidth, utils); const y = getPointInRange(rangeY, graphHeight, utils); start = findGridCell(x, y, grid); limit++; } while (newHeights[start] + h > 90 && limit < 50); change[start] = h; const queue = [start]; while (queue.length) { const q = queue.shift(); for (const c of grid.cells.c[q]) { if (change[c]) continue; change[c] = change[q] ** blobPower * (Math.random() * 0.2 + 0.9); if (change[c] > 1) queue.push(c); } } newHeights = newHeights.map((h, i) => lim(h + change[i])); } return newHeights; } function addPit(heights, grid, blobPower, utils, count, height, rangeX, rangeY) { const { getNumberInRange, findGridCell, lim } = utils; const graphWidth = grid.cellsX; const graphHeight = grid.cellsY; count = getNumberInRange(count); let newHeights = new Uint8Array(heights); while (count > 0) { addOnePit(); count--; } function addOnePit() { const used = new Uint8Array(heights.length); let limit = 0, start; let h = lim(getNumberInRange(height)); do { const x = getPointInRange(rangeX, graphWidth, utils); const y = getPointInRange(rangeY, graphHeight, utils); start = findGridCell(x, y, grid); limit++; } while (newHeights[start] < 20 && limit < 50); const queue = [start]; while (queue.length) { const q = queue.shift(); h = h ** blobPower * (Math.random() * 0.2 + 0.9); if (h < 1) return; grid.cells.c[q].forEach(function (c, i) { if (used[c]) return; newHeights[c] = lim(newHeights[c] - h * (Math.random() * 0.2 + 0.9)); used[c] = 1; queue.push(c); }); } } return newHeights; } // fromCell, toCell are options cell ids function addRange(heights, grid, linePower, utils, count, height, rangeX, rangeY, startCell, endCell) { const { getNumberInRange, findGridCell, lim, d3 } = utils; const graphWidth = grid.cellsX; const graphHeight = grid.cellsY; count = getNumberInRange(count); let newHeights = new Uint8Array(heights); while (count > 0) { addOneRange(); count--; } function addOneRange() { const used = new Uint8Array(heights.length); let h = lim(getNumberInRange(height)); if (rangeX && rangeY) { // find start and end points const startX = getPointInRange(rangeX, graphWidth, utils); const startY = getPointInRange(rangeY, graphHeight, utils); let dist = 0, limit = 0, endX, endY; do { endX = Math.random() * graphWidth * 0.8 + graphWidth * 0.1; endY = Math.random() * graphHeight * 0.7 + graphHeight * 0.15; dist = Math.abs(endY - startY) + Math.abs(endX - startX); limit++; } while ((dist < graphWidth / 8 || dist > graphWidth / 3) && limit < 50); startCell = findGridCell(startX, startY, grid); endCell = findGridCell(endX, endY, grid); } let range = getRange(startCell, endCell); // get main ridge function getRange(cur, end) { const range = [cur]; const p = grid.points; used[cur] = 1; while (cur !== end) { let min = Infinity; grid.cells.c[cur].forEach(function (e) { if (used[e]) return; let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2; if (Math.random() > 0.85) diff = diff / 2; if (diff < min) { min = diff; cur = e; } }); if (min === Infinity) return range; range.push(cur); used[cur] = 1; } return range; } // add height to ridge and cells around let queue = range.slice(), i = 0; while (queue.length) { const frontier = queue.slice(); (queue = []), i++; frontier.forEach(i => { newHeights[i] = lim(newHeights[i] + h * (Math.random() * 0.3 + 0.85)); }); h = h ** linePower - 1; if (h < 2) break; frontier.forEach(f => { grid.cells.c[f].forEach(i => { if (!used[i]) { queue.push(i); used[i] = 1; } }); }); } // generate prominences range.forEach((cur, d) => { if (d % 6 !== 0) return; for (const l of d3.range(i)) { const min = grid.cells.c[cur][d3.scan(grid.cells.c[cur], (a, b) => newHeights[a] - newHeights[b])]; // downhill cell newHeights[min] = (newHeights[cur] * 2 + newHeights[min]) / 3; cur = min; } }); } return newHeights; } function addTrough(heights, grid, linePower, utils, count, height, rangeX, rangeY, startCell, endCell) { const { getNumberInRange, findGridCell, lim, d3 } = utils; const graphWidth = grid.cellsX; const graphHeight = grid.cellsY; count = getNumberInRange(count); let newHeights = new Uint8Array(heights); while (count > 0) { addOneTrough(); count--; } function addOneTrough() { const used = new Uint8Array(heights.length); let h = lim(getNumberInRange(height)); if (rangeX && rangeY) { // find start and end points let limit = 0, startX, startY, dist = 0, endX, endY; do { startX = getPointInRange(rangeX, graphWidth, utils); startY = getPointInRange(rangeY, graphHeight, utils); startCell = findGridCell(startX, startY, grid); limit++; } while (newHeights[startCell] < 20 && limit < 50); limit = 0; do { endX = Math.random() * graphWidth * 0.8 + graphWidth * 0.1; endY = Math.random() * graphHeight * 0.7 + graphHeight * 0.15; dist = Math.abs(endY - startY) + Math.abs(endX - startX); limit++; } while ((dist < graphWidth / 8 || dist > graphWidth / 2) && limit < 50); endCell = findGridCell(endX, endY, grid); } let range = getRange(startCell, endCell); // get main ridge function getRange(cur, end) { const range = [cur]; const p = grid.points; used[cur] = 1; while (cur !== end) { let min = Infinity; grid.cells.c[cur].forEach(function (e) { if (used[e]) return; let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2; if (Math.random() > 0.8) diff = diff / 2; if (diff < min) { min = diff; cur = e; } }); if (min === Infinity) return range; range.push(cur); used[cur] = 1; } return range; } // add height to ridge and cells around let queue = range.slice(), i = 0; while (queue.length) { const frontier = queue.slice(); (queue = []), i++; frontier.forEach(i => { newHeights[i] = lim(newHeights[i] - h * (Math.random() * 0.3 + 0.85)); }); h = h ** linePower - 1; if (h < 2) break; frontier.forEach(f => { grid.cells.c[f].forEach(i => { if (!used[i]) { queue.push(i); used[i] = 1; } }); }); } // generate prominences range.forEach((cur, d) => { if (d % 6 !== 0) return; for (const l of d3.range(i)) { const min = grid.cells.c[cur][d3.scan(grid.cells.c[cur], (a, b) => newHeights[a] - newHeights[b])]; // downhill cell newHeights[min] = (newHeights[cur] * 2 + newHeights[min]) / 3; cur = min; } }); } return newHeights; } function addStrait(heights, grid, utils, width, direction = "vertical") { const { getNumberInRange, findGridCell, P } = utils; const graphWidth = grid.cellsX; const graphHeight = grid.cellsY; width = Math.min(getNumberInRange(width), grid.cellsX / 3); if (width < 1 && P(width)) return heights; let newHeights = new Uint8Array(heights); const used = new Uint8Array(heights.length); const vert = direction === "vertical"; const startX = vert ? Math.floor(Math.random() * graphWidth * 0.4 + graphWidth * 0.3) : 5; const startY = vert ? 5 : Math.floor(Math.random() * graphHeight * 0.4 + graphHeight * 0.3); const endX = vert ? Math.floor(graphWidth - startX - graphWidth * 0.1 + Math.random() * graphWidth * 0.2) : graphWidth - 5; const endY = vert ? graphHeight - 5 : Math.floor(graphHeight - startY - graphHeight * 0.1 + Math.random() * graphHeight * 0.2); const start = findGridCell(startX, startY, grid); const end = findGridCell(endX, endY, grid); let range = getRange(start, end); const query = []; function getRange(cur, end) { const range = []; const p = grid.points; while (cur !== end) { let min = Infinity; grid.cells.c[cur].forEach(function (e) { let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2; if (Math.random() > 0.8) diff = diff / 2; if (diff < min) { min = diff; cur = e; } }); range.push(cur); } return range; } const step = 0.1 / width; while (width > 0) { const exp = 0.9 - step * width; range.forEach(function (r) { grid.cells.c[r].forEach(function (e) { if (used[e]) return; used[e] = 1; query.push(e); newHeights[e] **= exp; if (newHeights[e] > 100) newHeights[e] = 5; }); }); range = query.slice(); width--; } return newHeights; } function modify(heights, range, add, mult, power) { const { lim } = { lim: val => Math.max(0, Math.min(100, val)) }; const min = range === "land" ? 20 : range === "all" ? 0 : +range.split("-")[0]; const max = range === "land" || range === "all" ? 100 : +range.split("-")[1]; const isLand = min === 20; return heights.map(h => { if (h < min || h > max) return h; if (add) h = isLand ? Math.max(h + add, 20) : h + add; if (mult !== 1) h = isLand ? (h - 20) * mult + 20 : h * mult; if (power) h = isLand ? (h - 20) ** power + 20 : h ** power; return lim(h); }); } function smooth(heights, grid, utils, fr = 2, add = 0) { const { d3, lim } = utils; return heights.map((h, i) => { const a = [h]; grid.cells.c[i].forEach(c => a.push(heights[c])); if (fr === 1) return d3.mean(a) + add; return lim((h * (fr - 1) + d3.mean(a) + add) / fr); }); } function mask(heights, grid, power = 1) { const { lim } = { lim: val => Math.max(0, Math.min(100, val)) }; const graphWidth = grid.cellsX; const graphHeight = grid.cellsY; const fr = power ? Math.abs(power) : 1; return heights.map((h, i) => { const [x, y] = grid.points[i]; const nx = (2 * x) / graphWidth - 1; // [-1, 1], 0 is center const ny = (2 * y) / graphHeight - 1; // [-1, 1], 0 is center let distance = (1 - nx ** 2) * (1 - ny ** 2); // 1 is center, 0 is edge if (power < 0) distance = 1 - distance; // inverted, 0 is center, 1 is edge const masked = h * distance; return lim((h * (fr - 1) + masked) / fr); }); } function invert(heights, grid, count, axes) { const { P } = { P: probability => Math.random() < probability }; if (!P(count)) return heights; const invertX = axes !== "y"; const invertY = axes !== "x"; const { cellsX, cellsY } = grid; const inverted = heights.map((h, i) => { const x = i % cellsX; const y = Math.floor(i / cellsX); const nx = invertX ? cellsX - x - 1 : x; const ny = invertY ? cellsY - y - 1 : y; const invertedI = nx + ny * cellsX; return heights[invertedI]; }); return inverted; } function getPointInRange(range, length, utils) { const { ERROR, rand } = utils; if (typeof range !== "string") { ERROR && console.error("Range should be a string"); return; } const min = range.split("-")[0] / 100 || 0; const max = range.split("-")[1] / 100 || min; return rand(min * length, max * length); } function createTypedArray({ maxValue, length }) { return new Uint8Array(length); } // Export utility functions for standalone use export { addHill, addPit, addRange, addTrough, addStrait, smooth, modify, mask, invert };