class Voronoi { /** * Creates a Voronoi diagram from the given Delaunator, a list of points, and the number of points. The Voronoi diagram is constructed using (I think) the {@link https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm |Bowyer-Watson Algorithm} * @param {{triangles: Uint32Array, halfedges: Int32Array}} delaunay A {@link https://github.com/mapbox/delaunator/blob/master/index.js |Delaunator} instance * @param {[number, number][]} points A list of coordinates. * @param {number} pointsN The number of points. */ constructor(delaunay, points, pointsN) { this.delaunay = delaunay; this.points = points; this.pointsN = pointsN; this.cells = { v: [], c: [], b: [] }; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell this.vertices = { p: [], v: [], c: [] }; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells for (let e = 0; e < this.delaunay.triangles.length; e++) { const p = this.delaunay.triangles[this.nextHalfedge(e)]; if (p < this.pointsN && !this.cells.c[p]) { const edges = this.edgesAroundPoint(e); this.cells.v[p] = edges.map(e => this.triangleOfEdge(e)); // cell: adjacent vertex this.cells.c[p] = edges.map(e => this.delaunay.triangles[e]).filter(c => c < this.pointsN); // cell: adjacent valid cells this.cells.b[p] = edges.length > this.cells.c[p].length ? 1 : 0; // cell: is border } const t = this.triangleOfEdge(e); if (!this.vertices.p[t]) { this.vertices.p[t] = this.triangleCenter(t); // vertex: coordinates this.vertices.v[t] = this.trianglesAdjacentToTriangle(t); // vertex: adjacent vertices this.vertices.c[t] = this.pointsOfTriangle(t); // vertex: adjacent cells } } } /** * * @param {number} t The index of the triangle * @returns {[number, number, number]} */ pointsOfTriangle(t) { return this.edgesOfTriangle(t).map(edge => this.delaunay.triangles[edge]); } /** * Identifies what triangles are adjacent to the given triangle * @param {number} t The index of the triangle * @returns {number[]} */ trianglesAdjacentToTriangle(t) { let triangles = []; for (let edge of this.edgesOfTriangle(t)) { let opposite = this.delaunay.halfedges[edge]; triangles.push(this.triangleOfEdge(opposite)); } return triangles; } /** * * @param {number} start * @returns {number[]} */ edgesAroundPoint(start) { const result = []; let incoming = start; do { result.push(incoming); const outgoing = this.nextHalfedge(incoming); incoming = this.delaunay.halfedges[outgoing]; } while (incoming !== -1 && incoming !== start && result.length < 20); return result; } /** * Returns the center of the triangle located at the given index. * @param {number} t The index of the triangle * @returns {number} */ triangleCenter(t) { let vertices = this.pointsOfTriangle(t).map(p => this.points[p]); return this.circumcenter(vertices[0], vertices[1], vertices[2]); } /** * Gets all of the edges of a triangle starting at index t * @param {number} t The index of the triangle * @returns {[number, number, number]} The edges of the triangle */ edgesOfTriangle(t) { return [3 * t, 3 * t + 1, 3 * t + 2]; } /** * Identifies the triangle that corresponds to the given edge index * @param {number} e The index of the edge * @returns {number} The index of the triangle */ triangleOfEdge(e) { return Math.floor(e / 3); } /** * Determines the index of the next half edge of the current triangle in the this.delaunay.triangles array * @param {number} e The index of the current half edge * @returns {number} The index of the next half edge */ nextHalfedge(e) { return (e % 3 === 2) ? e - 2 : e + 1; } /** * Determines the index of the previous half edge of the current triangle in the this.delaunay.triangles array * @param {number} e The index of the current half edge * @returns {number} The index of the previous half edge */ prevHalfedge(e) { return (e % 3 === 0) ? e + 2 : e - 1; } /** * Finds the circumcenter of the triangle identified by points a, b, and c. * @param {[number, number]} a * @param {[number, number]} b * @param {[number, number]} c * @return {[number, number]} The coordinates of the circumcenter of the triangle. */ circumcenter(a, b, c) { let ad = a[0] * a[0] + a[1] * a[1]; let bd = b[0] * b[0] + b[1] * b[1]; let cd = c[0] * c[0] + c[1] * c[1]; let D = 2 * (a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1])); return [ Math.floor(1 / D * (ad * (b[1] - c[1]) + bd * (c[1] - a[1]) + cd * (a[1] - b[1]))), Math.floor(1 / D * (ad * (c[0] - b[0]) + bd * (a[0] - c[0]) + cd * (b[0] - a[0]))) ]; } }