(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global.Rivers = factory()); }(this, (function () {'use strict'; const generate = function(changeHeights = true) { TIME && console.time('generateRivers'); Math.random = aleaPRNG(seed); const cells = pack.cells, p = cells.p, features = pack.features; // build distance field in cells from water (cells.t) void function markupLand() { const q = t => cells.i.filter(i => cells.t[i] === t); for (let t = 2, queue = q(t); queue.length; t++, queue = q(t)) { queue.forEach(i => cells.c[i].forEach(c => { if (!cells.t[c]) cells.t[c] = t+1; })); } }() // height with added t value to make map less depressed const h = Array.from(cells.h) .map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + cells.t[i] / 100) .map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + d3.mean(cells.c[i].map(c => cells.t[c])) / 10000); resolveDepressions(h); features.forEach(f => {delete f.river; delete f.flux; delete f.inlets}); const riversData = []; // rivers data cells.fl = new Uint16Array(cells.i.length); // water flux array cells.r = new Uint16Array(cells.i.length); // rivers array cells.conf = new Uint8Array(cells.i.length); // confluences array let riverNext = 1; // first river id is 1, not 0 void function drainWater() { const land = cells.i.filter(i => h[i] >= 20).sort((a,b) => h[b] - h[a]); const outlets = new Uint32Array(features.length); // enumerate lake outlet positions features.filter(f => f.type === "lake" && (f.group === "freshwater" || f.group === "frozen")).forEach(l => { let outlet = 0; if (l.shoreline) { outlet = l.shoreline[d3.scan(l.shoreline, (a,b) => h[a] - h[b])]; } else { // in case it got missed or deleted WARN && console.warn('Re-scanning shoreline of a lake'); const shallows = cells.i.filter(j => cells.t[j] === -1 && cells.f[j] === l.i); let shoreline = []; shallows.map(w => cells.c[w]).forEach(cList => cList.forEach(s => shoreline.push(s))); outlet = shoreline[d3.scan(shoreline, (a,b) => h[a] - h[b])]; } outlets[l.i] = outlet; delete l.shoreline // cleanup temp data once used }); const flowDown = function(min, mFlux, iFlux, ri, i = 0){ if (cells.r[min]) { // downhill cell already has river assigned if (mFlux < iFlux) { cells.conf[min] = cells.fl[min]; // mark confluence if (h[min] >= 20) riversData.find(r => r.river === cells.r[min]).parent = ri; // min river is a tributary of current river cells.r[min] = ri; // re-assign river if downhill part has less flux } else { cells.conf[min] += iFlux; // mark confluence if (h[min] >= 20) riversData.find(r => r.river === ri).parent = cells.r[min]; // current river is a tributary of min river } } else cells.r[min] = ri; // assign the river to the downhill cell if (h[min] < 20) { // pour water to the sea haven const oh = i ? cells.haven[i] : min; riversData.push({river: ri, cell: oh, x: p[min][0], y: p[min][1]}); const mf = features[cells.f[min]]; // feature of min cell if (mf.type === "lake") { if (!mf.river || iFlux > mf.flux) { mf.river = ri; // pour water to lake mf.flux = iFlux; // entering flux } mf.totalFlux = (mf.totalFlux || 0) + iFlux; if (mf.inlets) { mf.inlets.push(ri); } else { mf.inlets = [ri]; } } } else { cells.fl[min] += iFlux; // propagate flux riversData.push({river: ri, cell: min, x: p[min][0], y: p[min][1]}); // add next River segment } } land.forEach(function(i) { cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation const x = p[i][0], y = p[i][1]; // lake outlets draw from lake let n = -1, out2 = 0; while (outlets.includes(i, n+1)) { n = outlets.indexOf(i, n+1); const l = features[n]; if (!l) continue; const j = cells.haven[i]; // allow chain lakes to retain identity if(cells.r[j] !== l.river) { let touch = false; for (const c of cells.c[j]){ if (cells.r[c] === l.river) { touch = true; break; } } if (touch) { cells.r[j] = l.river; riversData.push({river: l.river, cell: j, x: p[j][0], y: p[j][1]}); } else { cells.r[j] = riverNext; riversData.push({river: riverNext, cell: j, x: p[j][0], y: p[j][1]}); riverNext++; } } cells.fl[j] = l.totalFlux; // signpost river size flowDown(i, cells.fl[i], l.totalFlux, cells.r[j]); // prevent dropping imediately back into the lake out2 = cells.c[i].filter(c => (h[c] >= 20 || cells.f[c] !== cells.f[j])).sort((a,b) => h[a] - h[b])[0]; // downhill cell not in the source lake // assign all to outlet basin if (l.inlets) l.inlets.forEach(fork => riversData.find(r => r.river === fork).parent = cells.r[j]); } // near-border cell: pour out of the screen if (cells.b[i]) { if (cells.r[i]) { const to = []; const min = Math.min(y, graphHeight - y, x, graphWidth - x); if (min === y) {to[0] = x; to[1] = 0;} else if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else if (min === x) {to[0] = 0; to[1] = y;} else if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;} riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1]}); } return; } const min = out2 || cells.c[i][d3.scan(cells.c[i], (a, b) => h[a] - h[b])]; // downhill cell if (cells.fl[i] < 30) { if (h[min] >= 20) cells.fl[min] += cells.fl[i]; return; // flux is too small to operate as river } // Proclaim a new river if (!cells.r[i]) { cells.r[i] = riverNext; riversData.push({river: riverNext, cell: i, x, y}); riverNext++; } flowDown(min, cells.fl[min], cells.fl[i], cells.r[i], i); }); }() void function defineRivers() { pack.rivers = []; // rivers data const riverPaths = []; // temporary data for all rivers for (let r = 1; r <= riverNext; r++) { const riverSegments = riversData.filter(d => d.river === r); if (riverSegments.length > 2) { const source = riverSegments[0], mouth = riverSegments[riverSegments.length-2]; const riverEnhanced = addMeandring(riverSegments); let width = rn(.8 + Math.random() * .4, 1); // river width modifier [.2, 10] let increment = rn(.8 + Math.random() * .6, 1); // river bed widening modifier [.01, 3] const [path, length] = getPath(riverEnhanced, width, increment, cells.h[source.cell] >= 20 ? .1 : .6); riverPaths.push([r, path, width, increment]); const parent = source.parent || 0; pack.rivers.push({i:r, parent, length, source:source.cell, mouth:mouth.cell}); } else { // remove too short rivers riverSegments.filter(s => cells.r[s.cell] === r).forEach(s => cells.r[s.cell] = 0); } } // drawRivers rivers.selectAll("path").remove(); rivers.selectAll("path").data(riverPaths).enter() .append("path").attr("d", d => d[1]).attr("id", d => "river"+d[0]) .attr("data-width", d => d[2]).attr("data-increment", d => d[3]); }() // apply change heights as basic one if (changeHeights) cells.h = Uint8Array.from(h); TIME && console.timeEnd('generateRivers'); } // depression filling algorithm (for a correct water flux modeling) const resolveDepressions = function(h) { const cells = pack.cells; const land = cells.i.filter(i => h[i] >= 20 && h[i] < 100 && !cells.b[i]); // exclude near-border cells const lakes = pack.features.filter(f => f.type === "lake" && (f.group === "freshwater" || f.group === "frozen")); // to keep lakes flat lakes.forEach(l => { l.shoreline = []; l.height = 21; l.totalFlux = grid.cells.prec[cells.g[l.firstCell]]; }); for (let i of land.filter(i => cells.t[i] === 1)) { // select shoreline cells cells.c[i].map(c => pack.features[cells.f[c]]).forEach(cf => { if (lakes.includes(cf) && !cf.shoreline.includes(i)) { cf.shoreline.push(i); } }) } land.sort((a,b) => h[b] - h[a]); // highest cells go first let depressed = false; for (let l = 0, depression = Infinity; depression && l < 100; l++) { depression = 0; for (const l of lakes) { const minHeight = d3.min(l.shoreline.map(s => h[s])); if (minHeight === 100) continue; // already max height if (l.height <= minHeight) { l.height = Math.min(rn(minHeight + 1), 100); depression++; depressed = true; } } for (const i of land) { const minHeight = d3.min(cells.c[i].map(c => cells.t[c] > 0 ? h[c] : pack.features[cells.f[c]].height || h[c] // NB undefined is falsy (a || b is short for a ? a : b) )); if (minHeight === 100) continue; // already max height if (h[i] <= minHeight) { h[i] = Math.min(minHeight + 1, 100); depression++; depressed = true; } } } return depressed; } // add more river points on 1/3 and 2/3 of length const addMeandring = function(segments, rndFactor = 0.3) { const riverEnhanced = []; // to store enhanced segments let side = 1; // to control meandring direction for (let s = 0; s < segments.length; s++) { const sX = segments[s].x, sY = segments[s].y; // segment start coordinates const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence riverEnhanced.push([sX, sY, c]); if (s+1 === segments.length) break; // do not enhance last segment const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates const angle = Math.atan2(eY - sY, eX - sX); const sin = Math.sin(angle), cos = Math.cos(angle); const serpentine = 1 / (s + 1) + 0.3; const meandr = serpentine + Math.random() * rndFactor; if (P(.5)) side *= -1; // change meandring direction in 50% const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2; // if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment if (dist2 > 64 || (dist2 > 16 && segments.length < 6)) { const p1x = (sX * 2 + eX) / 3 + side * -sin * meandr; const p1y = (sY * 2 + eY) / 3 + side * cos * meandr; if (P(.2)) side *= -1; // change 2nd extra point meandring direction in 20% const p2x = (sX + eX * 2) / 3 + side * sin * meandr; const p2y = (sY + eY * 2) / 3 + side * cos * meandr; riverEnhanced.push([p1x, p1y], [p2x, p2y]); // if dist is medium or river is small add 1 extra middlepoint } else if (dist2 > 16 || segments.length < 6) { const p1x = (sX + eX) / 2 + side * -sin * meandr; const p1y = (sY + eY) / 2 + side * cos * meandr; riverEnhanced.push([p1x, p1y]); } } return riverEnhanced; } const getPath = function(points, width = 1, increment = 1, starting = .1) { let offset, extraOffset = starting; // starting river width (to make river source visible) const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length const widening = rn((1000 + (riverLength * 30)) * increment); const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon const last = points.length - 1; const factor = riverLength / points.length; // first point let x = points[0][0], y = points[0][1], c; let angle = Math.atan2(y - points[1][1], x - points[1][0]); let sin = Math.sin(angle), cos = Math.cos(angle); let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset; riverPointsLeft.push([xLeft, yLeft]); let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset; riverPointsRight.unshift([xRight, yRight]); // middle points for (let p = 1; p < last; p++) { x = points[p][0], y = points[p][1], c = points[p][2] || 0; const xPrev = points[p-1][0], yPrev = points[p - 1][1]; const xNext = points[p+1][0], yNext = points[p + 1][1]; angle = Math.atan2(yPrev - yNext, xPrev - xNext); sin = Math.sin(angle), cos = Math.cos(angle); offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * width) + extraOffset; const confOffset = Math.atan(c * 5 / widening); extraOffset += confOffset; xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset); riverPointsLeft.push([xLeft, yLeft]); xRight = x + sin * offset, yRight = y + -cos * offset; riverPointsRight.unshift([xRight, yRight]); } // end point x = points[last][0], y = points[last][1], c = points[last][2]; if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x); sin = Math.sin(angle), cos = Math.cos(angle); xLeft = x + -sin * offset, yLeft = y + cos * offset; riverPointsLeft.push([xLeft, yLeft]); xRight = x + sin * offset, yRight = y + -cos * offset; riverPointsRight.unshift([xRight, yRight]); // generate polygon path and return lineGen.curve(d3.curveCatmullRom.alpha(0.1)); const right = lineGen(riverPointsRight); let left = lineGen(riverPointsLeft); left = left.substring(left.indexOf("C")); return [round(right + left, 2), rn(riverLength, 2)]; } const specify = function() { const rivers = pack.rivers; if (!rivers.length) return; Math.random = aleaPRNG(seed); const tresholdElement = Math.ceil(rivers.length * .15); const smallLength = rivers.map(r => r.length || 0).sort((a, b) => a-b)[tresholdElement]; const smallType = {"Creek":9, "River":3, "Brook":3, "Stream":1}; // weighted small river types for (const r of rivers) { r.basin = getBasin(r.i, r.parent); r.name = getName(r.mouth); const small = r.length < smallLength; r.type = r.parent && !(r.i%6) ? small ? "Branch" : "Fork" : small ? rw(smallType) : "River"; } } const getName = function(cell) { return Names.getCulture(pack.cells.culture[cell]); } // remove river and all its tributaries const remove = function(id) { const cells = pack.cells; const riversToRemove = pack.rivers.filter(r => r.i === id || getBasin(r.i, r.parent, id) === id).map(r => r.i); riversToRemove.forEach(r => rivers.select("#river"+r).remove()); cells.r.forEach((r, i) => { if (!r || !riversToRemove.includes(r)) return; cells.r[i] = 0; cells.fl[i] = grid.cells.prec[cells.g[i]]; cells.conf[i] = 0; }); pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i)); } const getBasin = function(r, p, e) { while (p && r !== p && r !== e) { const parent = pack.rivers.find(r => r.i === p); if (!parent) return r; r = parent.i; p = parent.parent; } return r; } return {generate, resolveDepressions, addMeandring, getPath, specify, getName, getBasin, remove}; })));