"use strict"; window.Rivers = (function () { const generate = function (allowErosion = true) { TIME && console.time("generateRivers"); Math.random = aleaPRNG(seed); const {cells, features} = pack; const riversData = {}; // rivers data const riverParents = {}; const addCellToRiver = function (cell, river) { if (!riversData[river]) riversData[river] = [cell]; else riversData[river].push(cell); }; cells.fl = new Uint16Array(cells.i.length); // water flux array cells.r = new Uint16Array(cells.i.length); // rivers array cells.conf = new Uint8Array(cells.i.length); // confluences array let riverNext = 1; // first river id is 1 const h = alterHeights(); Lakes.detectCloseLakes(h); resolveDepressions(h); drainWater(); defineRivers(); calculateConfluenceFlux(); Lakes.cleanupLakeData(); if (allowErosion) { cells.h = Uint8Array.from(h); // apply gradient downcutRivers(); // downcut river beds } TIME && console.timeEnd("generateRivers"); function drainWater() { const MIN_FLUX_TO_FORM_RIVER = 30; const cellsNumberModifier = (pointsInput.dataset.cells / 10000) ** 0.25; const prec = grid.cells.prec; const land = cells.i.filter(i => h[i] >= 20).sort((a, b) => h[b] - h[a]); const lakeOutCells = Lakes.defineClimateData(h); land.forEach(function (i) { cells.fl[i] += prec[cells.g[i]] / cellsNumberModifier; // add flux from precipitation // create lake outlet if lake is not in deep depression and flux > evaporation const lakes = lakeOutCells[i] ? features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation) : []; for (const lake of lakes) { const lakeCell = cells.c[i].find(c => h[c] < 20 && cells.f[c] === lake.i); cells.fl[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet // allow chain lakes to retain identity if (cells.r[lakeCell] !== lake.river) { const sameRiver = cells.c[lakeCell].some(c => cells.r[c] === lake.river); if (sameRiver) { cells.r[lakeCell] = lake.river; addCellToRiver(lakeCell, lake.river); } else { cells.r[lakeCell] = riverNext; addCellToRiver(lakeCell, riverNext); riverNext++; } } lake.outlet = cells.r[lakeCell]; flowDown(i, cells.fl[lakeCell], lake.outlet); } // assign all tributary rivers to outlet basin const outlet = lakes[0]?.outlet; for (const lake of lakes) { if (!Array.isArray(lake.inlets)) continue; for (const inlet of lake.inlets) { riverParents[inlet] = outlet; } } // near-border cell: pour water out of the screen if (cells.b[i] && cells.r[i]) return addCellToRiver(-1, cells.r[i]); // downhill cell (make sure it's not in the source lake) let min = null; if (lakeOutCells[i]) { const filtered = cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c])); min = filtered.sort((a, b) => h[a] - h[b])[0]; } else if (cells.haven[i]) { min = cells.haven[i]; } else { min = cells.c[i].sort((a, b) => h[a] - h[b])[0]; } // cells is depressed if (h[i] <= h[min]) return; // debug // .append("line") // .attr("x1", pack.cells.p[i][0]) // .attr("y1", pack.cells.p[i][1]) // .attr("x2", pack.cells.p[min][0]) // .attr("y2", pack.cells.p[min][1]) // .attr("stroke", "#333") // .attr("stroke-width", 0.2); if (cells.fl[i] < MIN_FLUX_TO_FORM_RIVER) { // flux is too small to operate as a river if (h[min] >= 20) cells.fl[min] += cells.fl[i]; return; } // proclaim a new river if (!cells.r[i]) { cells.r[i] = riverNext; addCellToRiver(i, riverNext); riverNext++; } flowDown(min, cells.fl[i], cells.r[i]); }); } function flowDown(toCell, fromFlux, river) { const toFlux = cells.fl[toCell] - cells.conf[toCell]; const toRiver = cells.r[toCell]; if (toRiver) { // downhill cell already has river assigned if (fromFlux > toFlux) { cells.conf[toCell] += cells.fl[toCell]; // mark confluence if (h[toCell] >= 20) riverParents[toRiver] = river; // min river is a tributary of current river cells.r[toCell] = river; // re-assign river if downhill part has less flux } else { cells.conf[toCell] += fromFlux; // mark confluence if (h[toCell] >= 20) riverParents[river] = toRiver; // current river is a tributary of min river } } else cells.r[toCell] = river; // assign the river to the downhill cell if (h[toCell] < 20) { // pour water to the water body const waterBody = features[cells.f[toCell]]; if (waterBody.type === "lake") { if (!waterBody.river || fromFlux > waterBody.enteringFlux) { waterBody.river = river; waterBody.enteringFlux = fromFlux; } waterBody.flux = waterBody.flux + fromFlux; if (!waterBody.inlets) waterBody.inlets = [river]; else waterBody.inlets.push(river); } } else { // propagate flux and add next river segment cells.fl[toCell] += fromFlux; } addCellToRiver(toCell, river); } function defineRivers() { // re-initialize rivers and confluence arrays cells.r = new Uint16Array(cells.i.length); cells.conf = new Uint16Array(cells.i.length); pack.rivers = []; const defaultWidthFactor = rn(1 / (pointsInput.dataset.cells / 10000) ** 0.25, 2); const mainStemWidthFactor = defaultWidthFactor * 1.2; for (const key in riversData) { const riverCells = riversData[key]; if (riverCells.length < 3) continue; // exclude tiny rivers const riverId = +key; for (const cell of riverCells) { if (cell < 0 || cells.h[cell] < 20) continue; // mark real confluences and assign river to cells if (cells.r[cell]) cells.conf[cell] = 1; else cells.r[cell] = riverId; } const source = riverCells[0]; const mouth = riverCells[riverCells.length - 2]; const parent = riverParents[key] || 0; const widthFactor = !parent || parent === riverId ? mainStemWidthFactor : defaultWidthFactor; const meanderedPoints = addMeandering(riverCells); const discharge = cells.fl[mouth]; // m3 in second const length = getApproximateLength(meanderedPoints); const sourceWidth = getSourceWidth(cells.fl[source]); const width = getWidth( getOffset({ flux: discharge, pointIndex: meanderedPoints.length, widthFactor, startingWidth: sourceWidth }) ); pack.rivers.push({ i: riverId, source, mouth, discharge, length, width, widthFactor, sourceWidth, parent, cells: riverCells }); } } function downcutRivers() { const MAX_DOWNCUT = 5; for (const i of pack.cells.i) { if (cells.h[i] < 35) continue; // don't donwcut lowlands if (!cells.fl[i]) continue; const higherCells = cells.c[i].filter(c => cells.h[c] > cells.h[i]); const higherFlux = higherCells.reduce((acc, c) => acc + cells.fl[c], 0) / higherCells.length; if (!higherFlux) continue; const downcut = Math.floor(cells.fl[i] / higherFlux); if (downcut) cells.h[i] -= Math.min(downcut, MAX_DOWNCUT); } } function calculateConfluenceFlux() { for (const i of cells.i) { if (!cells.conf[i]) continue; const sortedInflux = cells.c[i] .filter(c => cells.r[c] && h[c] > h[i]) .map(c => cells.fl[c]) .sort((a, b) => b - a); cells.conf[i] = sortedInflux.reduce((acc, flux, index) => (index ? acc + flux : acc), 0); } } }; // add distance to water value to land cells to make map less depressed const alterHeights = () => { const {h, c, t} = pack.cells; return Array.from(h).map((h, i) => { if (h < 20 || t[i] < 1) return h; return h + t[i] / 100 + d3.mean(c[i].map(c => t[c])) / 10000; }); }; // depression filling algorithm (for a correct water flux modeling) const resolveDepressions = function (h) { const {cells, features} = pack; const maxIterations = +document.getElementById("resolveDepressionsStepsOutput").value; const checkLakeMaxIteration = maxIterations * 0.85; const elevateLakeMaxIteration = maxIterations * 0.75; const height = i => features[cells.f[i]].height || h[i]; // height of lake or specific cell const lakes = features.filter(f => f.type === "lake"); const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells land.sort((a, b) => h[a] - h[b]); // lowest cells go first const progress = []; let depressions = Infinity; let prevDepressions = null; for (let iteration = 0; depressions && iteration < maxIterations; iteration++) { if (progress.length > 5 && d3.sum(progress) > 0) { // bad progress, abort and set heights back h = alterHeights(); depressions = progress[0]; break; } depressions = 0; if (iteration < checkLakeMaxIteration) { for (const l of lakes) { if (l.closed) continue; const minHeight = d3.min(l.shoreline.map(s => h[s])); if (minHeight >= 100 || l.height > minHeight) continue; if (iteration > elevateLakeMaxIteration) { l.shoreline.forEach(i => (h[i] = cells.h[i])); l.height = d3.min(l.shoreline.map(s => h[s])) - 1; l.closed = true; continue; } depressions++; l.height = minHeight + 0.2; } } for (const i of land) { const minHeight = d3.min(cells.c[i].map(c => height(c))); if (minHeight >= 100 || h[i] > minHeight) continue; depressions++; h[i] = minHeight + 0.1; } prevDepressions !== null && progress.push(depressions - prevDepressions); prevDepressions = depressions; } depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`); }; // add points at 1/3 and 2/3 of a line between adjacents river cells const addMeandering = function (riverCells, riverPoints = null, meandering = 0.5) { const {fl, h} = pack.cells; const meandered = []; const lastStep = riverCells.length - 1; const points = getRiverPoints(riverCells, riverPoints); let step = h[riverCells[0]] < 20 ? 1 : 10; for (let i = 0; i <= lastStep; i++, step++) { const cell = riverCells[i]; const isLastCell = i === lastStep; const [x1, y1] = points[i]; meandered.push([x1, y1, fl[cell]]); if (isLastCell) break; const nextCell = riverCells[i + 1]; const [x2, y2] = points[i + 1]; if (nextCell === -1) { meandered.push([x2, y2, fl[cell]]); break; } const dist2 = (x2 - x1) ** 2 + (y2 - y1) ** 2; // square distance between cells if (dist2 <= 25 && riverCells.length >= 6) continue; const meander = meandering + 1 / step + Math.max(meandering - step / 100, 0); const angle = Math.atan2(y2 - y1, x2 - x1); const sinMeander = Math.sin(angle) * meander; const cosMeander = Math.cos(angle) * meander; if (step < 20 && (dist2 > 64 || (dist2 > 36 && riverCells.length < 5))) { // if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment const p1x = (x1 * 2 + x2) / 3 + -sinMeander; const p1y = (y1 * 2 + y2) / 3 + cosMeander; const p2x = (x1 + x2 * 2) / 3 + sinMeander / 2; const p2y = (y1 + y2 * 2) / 3 - cosMeander / 2; meandered.push([p1x, p1y, 0], [p2x, p2y, 0]); } else if (dist2 > 25 || riverCells.length < 6) { // if dist is medium or river is small add 1 extra middlepoint const p1x = (x1 + x2) / 2 + -sinMeander; const p1y = (y1 + y2) / 2 + cosMeander; meandered.push([p1x, p1y, 0]); } } return meandered; }; const getRiverPoints = (riverCells, riverPoints) => { if (riverPoints) return riverPoints; const {p} = pack.cells; return riverCells.map((cell, i) => { if (cell === -1) return getBorderPoint(riverCells[i - 1]); return p[cell]; }); }; const getBorderPoint = i => { const [x, y] = pack.cells.p[i]; const min = Math.min(y, graphHeight - y, x, graphWidth - x); if (min === y) return [x, 0]; else if (min === graphHeight - y) return [x, graphHeight]; else if (min === x) return [0, y]; return [graphWidth, y]; }; const FLUX_FACTOR = 500; const MAX_FLUX_WIDTH = 1; const LENGTH_FACTOR = 200; const LENGTH_STEP_WIDTH = 1 / LENGTH_FACTOR; const LENGTH_PROGRESSION = [1, 1, 2, 3, 5, 8, 13, 21, 34].map(n => n / LENGTH_FACTOR); const getOffset = ({flux, pointIndex, widthFactor, startingWidth}) => { if (pointIndex === 0) return startingWidth; const fluxWidth = Math.min(flux ** 0.7 / FLUX_FACTOR, MAX_FLUX_WIDTH); const lengthWidth = pointIndex * LENGTH_STEP_WIDTH + (LENGTH_PROGRESSION[pointIndex] || LENGTH_PROGRESSION.at(-1)); return widthFactor * (lengthWidth + fluxWidth) + startingWidth; }; const getSourceWidth = flux => rn(Math.min(flux ** 0.9 / FLUX_FACTOR, MAX_FLUX_WIDTH), 2); // build polygon from a list of points and calculated offset (width) const getRiverPath = (points, widthFactor, startingWidth) => { lineGen.curve(d3.curveCatmullRom.alpha(0.1)); const riverPointsLeft = []; const riverPointsRight = []; let flux = 0; for (let pointIndex = 0; pointIndex < points.length; pointIndex++) { const [x0, y0] = points[pointIndex - 1] || points[pointIndex]; const [x1, y1, pointFlux] = points[pointIndex]; const [x2, y2] = points[pointIndex + 1] || points[pointIndex]; if (pointFlux > flux) flux = pointFlux; const offset = getOffset({flux, pointIndex, widthFactor, startingWidth}); const angle = Math.atan2(y0 - y2, x0 - x2); const sinOffset = Math.sin(angle) * offset; const cosOffset = Math.cos(angle) * offset; riverPointsLeft.push([x1 - sinOffset, y1 + cosOffset]); riverPointsRight.push([x1 + sinOffset, y1 - cosOffset]); } const right = lineGen(riverPointsRight.reverse()); let left = lineGen(riverPointsLeft); left = left.substring(left.indexOf("C")); return round(right + left, 1); }; const specify = function () { const rivers = pack.rivers; if (!rivers.length) return; for (const river of rivers) { river.basin = getBasin(river.i); river.name = getName(river.mouth); river.type = getType(river); } }; const getName = function (cell) { return Names.getCulture(pack.cells.culture[cell]); }; // weighted arrays of river type names const riverTypes = { main: { big: {River: 1}, small: {Creek: 9, River: 3, Brook: 3, Stream: 1} }, fork: { big: {Fork: 1}, small: {Branch: 1} } }; let smallLength = null; const getType = function ({i, length, parent}) { if (smallLength === null) { const threshold = Math.ceil(pack.rivers.length * 0.15); smallLength = pack.rivers.map(r => r.length || 0).sort((a, b) => a - b)[threshold]; } const isSmall = length < smallLength; const isFork = each(3)(i) && parent && parent !== i; return rw(riverTypes[isFork ? "fork" : "main"][isSmall ? "small" : "big"]); }; const getApproximateLength = points => { const length = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i - 1][0], v[1] - p[i - 1][1]) : 0), 0); return rn(length, 2); }; // Real mouth width examples: Amazon 6000m, Volga 6000m, Dniepr 3000m, Mississippi 1300m, Themes 900m, // Danube 800m, Daugava 600m, Neva 500m, Nile 450m, Don 400m, Wisla 300m, Pripyat 150m, Bug 140m, Muchavets 40m const getWidth = offset => rn((offset / 1.5) ** 1.8, 2); // mouth width in km // remove river and all its tributaries const remove = function (id) { const cells = pack.cells; const riversToRemove = pack.rivers.filter(r => r.i === id || r.parent === id || r.basin === id).map(r => r.i); riversToRemove.forEach(r => rivers.select("#river" + r).remove()); cells.r.forEach((r, i) => { if (!r || !riversToRemove.includes(r)) return; cells.r[i] = 0; cells.fl[i] = grid.cells.prec[cells.g[i]]; cells.conf[i] = 0; }); pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i)); }; const getBasin = function (r) { const parent = pack.rivers.find(river => river.i === r)?.parent; if (!parent || r === parent) return r; return getBasin(parent); }; const getNextId = function (rivers) { return rivers.length ? Math.max(...rivers.map(r => r.i)) + 1 : 1; }; return { generate, alterHeights, resolveDepressions, addMeandering, getRiverPath, specify, getName, getType, getBasin, getWidth, getOffset, getSourceWidth, getApproximateLength, getRiverPoints, remove, getNextId }; })();