(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global.Rivers = factory()); }(this, (function () {'use strict'; const generate = function Rivers() { console.time('generateRivers'); Math.seedrandom(seed); const cells = pack.cells, p = cells.p, features = pack.features; features.forEach(f => {delete f.river; delete f.flux;}); const riversData = []; // rivers data cells.fl = new Uint16Array(cells.i.length); // water flux array cells.r = new Uint16Array(cells.i.length); // rivers array cells.conf = new Uint8Array(cells.i.length); // confluences array let riverNext = 1; // first river id is 1, not 0 void function drainWater() { const land = cells.i.filter(isLand).sort(highest); land.forEach(function(i) { cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation const x = p[i][0], y = p[i][1]; // near-border cell: pour out of the screen if (cells.b[i]) { if (cells.r[i]) { const to = []; const min = Math.min(y, graphHeight - y, x, graphWidth - x); if (min === y) {to[0] = x; to[1] = 0;} else if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else if (min === x) {to[0] = 0; to[1] = y;} else if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;} riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1]}); } return; } const min = cells.c[i][d3.scan(cells.c[i], (a, b) => cells.h[a] - cells.h[b])]; // downhill cell // allow only one river can flow thought a lake const cf = features[cells.f[i]]; // current cell feature if (cf.river && cf.river !== cells.r[i]) { cells.fl[i] = 0; } if (cells.fl[i] < 30) { if (cells.h[min] >= 20) cells.fl[min] += cells.fl[i]; return; // flux is too small to operate as river } // Proclaim a new river if (!cells.r[i]) { cells.r[i] = riverNext; riversData.push({river: riverNext, cell: i, x, y}); riverNext++; } if (cells.r[min]) { // downhill cell already has river assigned if (cells.fl[min] < cells.fl[i]) { cells.conf[min] = cells.fl[min]; // confluence cells.r[min] = cells.r[i]; // re-assign river if downhill part has less flux } else cells.conf[min] += cells.fl[i]; // confluence } else cells.r[min] = cells.r[i]; // assign the river to the downhill cell const nx = p[min][0], ny = p[min][1]; if (cells.h[min] < 20) { // pour water to the sea haven riversData.push({river: cells.r[i], cell: cells.haven[i], x: nx, y: ny}); } else { const mf = features[cells.f[min]]; // feature of min cell if (mf.type === "lake") { if (!mf.river || cells.fl[i] > mf.flux) { mf.river = cells.r[i]; // pour water to temporaly elevated lake mf.flux = cells.fl[i]; // entering flux } } cells.fl[min] += cells.fl[i]; // propagate flux riversData.push({river: cells.r[i], cell: min, x: nx, y: ny}); // add next River segment } }); }() void function drawRivers() { const riverPaths = []; // to store data for all rivers for (let r = 1; r <= riverNext; r++) { const riverSegments = riversData.filter(d => d.river === r); if (riverSegments.length > 2) { const riverEnhanced = addMeandring(riverSegments); const width = rn(0.8 + Math.random() * 0.4, 1); // river width modifier const increment = rn(0.8 + Math.random() * 0.6, 1); // river bed widening modifier const path = getPath(riverEnhanced, width, increment); riverPaths.push([r, path, width, increment]); } else { // remove too short rivers riverSegments.filter(s => cells.r[s.cell] === r).forEach(s => cells.r[s.cell] = 0); } } rivers.selectAll("path").remove(); rivers.selectAll("path").data(riverPaths).enter() .append("path").attr("d", d => d[1]).attr("id", d => "river"+d[0]) .attr("data-width", d => d[2]).attr("data-increment", d => d[3]); }() console.timeEnd('generateRivers'); } // add more river points on 1/3 and 2/3 of length const addMeandring = function(segments, rndFactor = 0.3) { const riverEnhanced = []; // to store enhanced segments let side = 1; // to control meandring direction for (let s = 0; s < segments.length; s++) { const sX = segments[s].x, sY = segments[s].y; // segment start coordinates const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence riverEnhanced.push([sX, sY, c]); if (s+1 === segments.length) break; // do not enhance last segment const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates const angle = Math.atan2(eY - sY, eX - sX); const sin = Math.sin(angle), cos = Math.cos(angle); const serpentine = 1 / (s + 1) + 0.3; const meandr = serpentine + Math.random() * rndFactor; if (Math.random() < 0.5) side *= -1; // change meandring direction in 50% const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2; // if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment if (dist2 > 64 || (dist2 > 16 && segments.length < 6)) { const p1x = (sX * 2 + eX) / 3 + side * -sin * meandr; const p1y = (sY * 2 + eY) / 3 + side * cos * meandr; if (Math.random() < 0.2) side *= -1; // change 2nd extra point meandring direction in 20% const p2x = (sX + eX * 2) / 3 + side * sin * meandr; const p2y = (sY + eY * 2) / 3 + side * cos * meandr; riverEnhanced.push([p1x, p1y], [p2x, p2y]); // if dist is medium or river is small add 1 extra middlepoint } else if (dist2 > 16 || segments.length < 6) { const p1x = (sX + eX) / 2 + side * -sin * meandr; const p1y = (sY + eY) / 2 + side * cos * meandr; riverEnhanced.push([p1x, p1y]); } } return riverEnhanced; } const getPath = function(points, width = 1, increment = 1) { let offset, extraOffset = .1; // starting river width (to make river source visible) const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length const widening = rn((1000 + (riverLength * 30)) * increment); const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon const last = points.length - 1; const factor = riverLength / points.length; // first point let x = points[0][0], y = points[0][1], c; let angle = Math.atan2(y - points[1][1], x - points[1][0]); let sin = Math.sin(angle), cos = Math.cos(angle); let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset; riverPointsLeft.push([xLeft, yLeft]); let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset; riverPointsRight.unshift([xRight, yRight]); // middle points for (let p = 1; p < last; p++) { x = points[p][0], y = points[p][1], c = points[p][2] || 0; const xPrev = points[p-1][0], yPrev = points[p - 1][1]; const xNext = points[p+1][0], yNext = points[p + 1][1]; angle = Math.atan2(yPrev - yNext, xPrev - xNext); sin = Math.sin(angle), cos = Math.cos(angle); offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * width) + extraOffset; const confOffset = Math.atan(c * 5 / widening); extraOffset += confOffset; xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset); riverPointsLeft.push([xLeft, yLeft]); xRight = x + sin * offset, yRight = y + -cos * offset; riverPointsRight.unshift([xRight, yRight]); } // end point x = points[last][0], y = points[last][1], c = points[last][2]; if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x); sin = Math.sin(angle), cos = Math.cos(angle); xLeft = x + -sin * offset, yLeft = y + cos * offset; riverPointsLeft.push([xLeft, yLeft]); xRight = x + sin * offset, yRight = y + -cos * offset; riverPointsRight.unshift([xRight, yRight]); // generate polygon path and return lineGen.curve(d3.curveCatmullRom.alpha(0.1)); const right = lineGen(riverPointsRight); let left = lineGen(riverPointsLeft); left = left.substring(left.indexOf("C")); return round(right + left, 2); } return {generate, addMeandring, getPath}; })));