(function (global, factory) { typeof exports === "object" && typeof module !== "undefined" ? (module.exports = factory()) : typeof define === "function" && define.amd ? define(factory) : (global.Rivers = factory()); })(this, function () { "use strict"; const generate = function (allowErosion = true) { TIME && console.time("generateRivers"); Math.random = aleaPRNG(seed); const {cells, features} = pack; const p = cells.p; const riversData = []; // rivers data cells.fl = new Uint16Array(cells.i.length); // water flux array cells.r = new Uint16Array(cells.i.length); // rivers array cells.conf = new Uint8Array(cells.i.length); // confluences array let riverNext = 1; // first river id is 1 const h = alterHeights(); Lakes.prepareLakeData(h); resolveDepressions(h); drainWater(); lineGen.curve(d3.curveCatmullRom.alpha(0.1)); defineRivers(); calculateConfluenceFlux(); Lakes.cleanupLakeData(); if (allowErosion) cells.h = Uint8Array.from(h); // apply changed heights as basic one TIME && console.timeEnd("generateRivers"); function drainWater() { const MIN_FLUX_TO_FORM_RIVER = 30; const prec = grid.cells.prec; const land = cells.i.filter(i => h[i] >= 20).sort((a, b) => h[b] - h[a]); const lakeOutCells = Lakes.setClimateData(h); land.forEach(function (i) { cells.fl[i] += prec[cells.g[i]]; // add flux from precipitation // create lake outlet if lake is not in deep depression and flux > evaporation const lakes = lakeOutCells[i] ? features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation) : []; for (const lake of lakes) { const lakeCell = cells.c[i].find(c => h[c] < 20 && cells.f[c] === lake.i); cells.fl[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet // allow chain lakes to retain identity if (cells.r[lakeCell] !== lake.river) { const sameRiver = cells.c[lakeCell].some(c => cells.r[c] === lake.river); if (sameRiver) { cells.r[lakeCell] = lake.river; riversData.push({river: lake.river, cell: lakeCell}); } else { cells.r[lakeCell] = riverNext; riversData.push({river: riverNext, cell: lakeCell}); riverNext++; } } lake.outlet = cells.r[lakeCell]; flowDown(i, cells.fl[lakeCell], lake.outlet); } // assign all tributary rivers to outlet basin for (let outlet = lakes[0]?.outlet, l = 0; l < lakes.length; l++) { lakes[l].inlets?.forEach(fork => (riversData.find(r => r.river === fork).parent = outlet)); } // near-border cell: pour water out of the screen if (cells.b[i] && cells.r[i]) { riversData.push({river: cells.r[i], cell: -1}); return; } // downhill cell (make sure it's not in the source lake) let min = null; if (lakeOutCells[i]) { const filtered = cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c])); min = filtered.sort((a, b) => h[a] - h[b])[0]; } else if (cells.haven[i]) { min = cells.haven[i]; } else { min = cells.c[i].sort((a, b) => h[a] - h[b])[0]; } // cells is depressed if (h[i] <= h[min]) return; if (cells.fl[i] < MIN_FLUX_TO_FORM_RIVER) { // flux is too small to operate as a river if (h[min] >= 20) cells.fl[min] += cells.fl[i]; return; } // proclaim a new river if (!cells.r[i]) { cells.r[i] = riverNext; riversData.push({river: riverNext, cell: i}); riverNext++; } flowDown(min, cells.fl[i], cells.r[i]); }); } function flowDown(toCell, fromFlux, river) { const toFlux = cells.fl[toCell] - cells.conf[toCell]; if (cells.r[toCell]) { // downhill cell already has river assigned if (fromFlux > toFlux) { cells.conf[toCell] += cells.fl[toCell]; // mark confluence if (h[toCell] >= 20) { // min river is a tributary of current river const toRiver = riversData.find(r => r.river === cells.r[toCell]); if (toRiver) toRiver.parent = river; } cells.r[toCell] = river; // re-assign river if downhill part has less flux } else { cells.conf[toCell] += fromFlux; // mark confluence if (h[toCell] >= 20) { // current river is a tributary of min river const thisRiver = riversData.find(r => r.river === river); if (thisRiver) thisRiver.parent = cells.r[toCell]; } } } else cells.r[toCell] = river; // assign the river to the downhill cell if (h[toCell] < 20) { // pour water to the water body const waterBody = features[cells.f[toCell]]; if (waterBody.type === "lake") { if (!waterBody.river || fromFlux > waterBody.enteringFlux) { waterBody.river = river; waterBody.enteringFlux = fromFlux; } waterBody.flux = waterBody.flux + fromFlux; if (!waterBody.inlets) waterBody.inlets = [river]; else waterBody.inlets.push(river); } } else { // propagate flux and add next river segment cells.fl[toCell] += fromFlux; } riversData.push({river, cell: toCell}); } function defineRivers() { // re-initialize rivers and confluence arrays cells.r = new Uint16Array(cells.i.length); cells.conf = new Uint16Array(cells.i.length); pack.rivers = []; const riverPaths = []; for (let r = 1; r <= riverNext; r++) { const riverData = riversData.filter(d => d.river === r); if (riverData.length < 3) continue; // exclude tiny rivers for (const segment of riverData) { const i = segment.cell; if (i < 0 || cells.h[i] < 20) continue; // mark real confluences and assign river to cells if (cells.r[i]) cells.conf[i] = 1; else cells.r[i] = r; } const source = riverData[0].cell; const mouth = riverData[riverData.length - 2].cell; const parent = riverData[0].parent || 0; const riverCells = riverData.map(point => point.cell); const widthFactor = !parent || parent === r ? 1.2 : 1; const initStep = cells.h[source] >= 20 ? 1 : 10; const riverMeandered = addMeandering(riverCells, initStep, 0.5); const [path, length, offset] = getRiverPath(riverMeandered, widthFactor); riverPaths.push([path, r]); // Real mounth width examples: Amazon 6000m, Volga 6000m, Dniepr 3000m, Mississippi 1300m, Themes 900m, // Danube 800m, Daugava 600m, Neva 500m, Nile 450m, Don 400m, Wisla 300m, Pripyat 150m, Bug 140m, Muchavets 40m const width = rn((offset / 1.4) ** 2, 2); // mounth width in km const discharge = last(riverData).flux; // in m3/s pack.rivers.push({i: r, source, mouth, discharge, length, width, widthFactor, sourceWidth: 0, parent, cells: riverCells}); } // draw rivers rivers.html(riverPaths.map(d => ``).join("")); } function calculateConfluenceFlux() { for (const i of cells.i) { if (!cells.conf[i]) continue; const sortedInflux = cells.c[i] .filter(c => cells.r[c] && h[c] > h[i]) .map(c => cells.fl[c]) .sort((a, b) => b - a); cells.conf[i] = sortedInflux.reduce((acc, flux, index) => (index ? acc + flux : acc), 0); } } }; // add distance to water value to land cells to make map less depressed const alterHeights = () => { const {h, c, t} = pack.cells; return Array.from(h).map((h, i) => { if (h < 20 || t[i] < 1) return h; return h + t[i] / 100 + d3.mean(c[i].map(c => t[c])) / 10000; }); }; // depression filling algorithm (for a correct water flux modeling) const resolveDepressions = function (h) { const {cells, features} = pack; const maxIterations = +document.getElementById("resolveDepressionsStepsOutput").value; const checkLakeMaxIteration = maxIterations * 0.85; const elevateLakeMaxIteration = maxIterations * 0.75; const height = i => features[cells.f[i]].height || h[i]; // height of lake or specific cell const lakes = features.filter(f => f.type === "lake"); const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells land.sort((a, b) => h[a] - h[b]); // lowest cells go first const progress = []; let depressions = Infinity; let prevDepressions = null; for (let iteration = 0; depressions && iteration < maxIterations; iteration++) { if (progress.length > 5 && d3.sum(progress) > 0) { // bad progress, abort and set heights back h = alterHeights(); depressions = progress[0]; break; } depressions = 0; if (iteration < checkLakeMaxIteration) { for (const l of lakes) { if (l.closed) continue; const minHeight = d3.min(l.shoreline.map(s => h[s])); if (minHeight >= 100 || l.height > minHeight) continue; if (iteration > elevateLakeMaxIteration) { l.shoreline.forEach(i => (h[i] = cells.h[i])); l.height = d3.min(l.shoreline.map(s => h[s])) - 1; l.closed = true; continue; } depressions++; l.height = minHeight + 0.2; } } for (const i of land) { const minHeight = d3.min(cells.c[i].map(c => height(c))); if (minHeight >= 100 || h[i] > minHeight) continue; depressions++; h[i] = minHeight + 0.1; } prevDepressions !== null && progress.push(depressions - prevDepressions); prevDepressions = depressions; } depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`); }; // add points at 1/3 and 2/3 of a line between adjacents river cells const addMeandering = function (riverCells, step = 1, meandering = 0.5) { const meandered = []; const {p, fl, conf} = pack.cells; const lastStep = riverCells.length - 1; let fluxPrev = 0; const getFlux = (step, flux) => (step === lastStep ? fluxPrev : flux); for (let i = 0; i <= lastStep; i++, step++) { const cell = riverCells[i]; const isLastCell = i === lastStep; const [x1, y1] = p[cell]; const flux1 = getFlux(i, fl[cell]); fluxPrev = flux1; meandered.push([x1, y1, flux1]); if (isLastCell) break; const nextCell = riverCells[i + 1]; if (nextCell === -1) { const [x, y] = getBorderPoint(cell); meandered.push([x, y, fluxPrev]); break; } const [x2, y2] = p[nextCell]; const dist2 = (x2 - x1) ** 2 + (y2 - y1) ** 2; // square distance between cells if (dist2 <= 25 && riverCells.length >= 6) continue; const flux2 = getFlux(i + 1, fl[nextCell]); const keepInitialFlux = conf[nextCell] || flux1 === flux2; const meander = meandering + 1 / step + Math.max(meandering - step / 100, 0); const angle = Math.atan2(y2 - y1, x2 - x1); const sinMeander = Math.sin(angle) * meander; const cosMeander = Math.cos(angle) * meander; if (step < 10 && (dist2 > 64 || (dist2 > 36 && riverCells.length < 5))) { // if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment const p1x = (x1 * 2 + x2) / 3 + -sinMeander; const p1y = (y1 * 2 + y2) / 3 + cosMeander; const p2x = (x1 + x2 * 2) / 3 + sinMeander; const p2y = (y1 + y2 * 2) / 3 + cosMeander; const [p1fl, p2fl] = keepInitialFlux ? [flux1, flux1] : [(flux1 * 2 + flux2) / 3, (flux1 + flux2 * 2) / 3]; meandered.push([p1x, p1y, p1fl], [p2x, p2y, p2fl]); } else if (dist2 > 25 || riverCells.length < 6) { // if dist is medium or river is small add 1 extra middlepoint const p1x = (x1 + x2) / 2 + -sinMeander; const p1y = (y1 + y2) / 2 + cosMeander; const p1fl = keepInitialFlux ? flux1 : (flux1 + flux2) / 2; meandered.push([p1x, p1y, p1fl]); } } return meandered; }; const fluxFactor = 500; const maxFluxWidth = 2; const widthFactor = 200; const stepWidth = 1 / widthFactor; const lengthProgression = [1, 1, 2, 3, 5, 8, 13, 21, 34].map(n => n / widthFactor); const maxProgression = last(lengthProgression); // build polygon from a list of points and calculated offset (width) const getRiverPath = function (points, widthFactor = 1, startingWidth = 0) { const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i - 1][0], v[1] - p[i - 1][1]) : 0), 0); let width = 0; const riverPointsLeft = []; const riverPointsRight = []; for (let p = 0; p < points.length; p++) { const [x0, y0] = points[p - 1] || points[p]; const [x1, y1, flux] = points[p]; const [x2, y2] = points[p + 1] || points[p]; const fluxWidth = Math.min(flux ** 0.9 / fluxFactor, maxFluxWidth); const lengthWidth = p * stepWidth + (lengthProgression[p] || maxProgression); width = widthFactor * (lengthWidth + fluxWidth) + startingWidth; const angle = Math.atan2(y0 - y2, x0 - x2); const sinOffset = Math.sin(angle) * width; const cosOffset = Math.cos(angle) * width; riverPointsLeft.push([x1 - sinOffset, y1 + cosOffset]); riverPointsRight.push([x1 + sinOffset, y1 - cosOffset]); } const right = lineGen(riverPointsRight.reverse()); let left = lineGen(riverPointsLeft); left = left.substring(left.indexOf("C")); return [round(right + left, 2), rn(riverLength, 2), width]; }; const specify = function () { const rivers = pack.rivers; if (!rivers.length) return; Math.random = aleaPRNG(seed); const thresholdElement = Math.ceil(rivers.length * 0.15); const smallLength = rivers.map(r => r.length || 0).sort((a, b) => a - b)[thresholdElement]; const smallType = {Creek: 9, River: 3, Brook: 3, Stream: 1}; // weighted small river types for (const r of rivers) { r.basin = getBasin(r.i); r.name = getName(r.mouth); const small = r.length < smallLength; r.type = r.parent && !(r.i % 6) ? (small ? "Branch" : "Fork") : small ? rw(smallType) : "River"; } }; const getName = function (cell) { return Names.getCulture(pack.cells.culture[cell]); }; // remove river and all its tributaries const remove = function (id) { const cells = pack.cells; const riversToRemove = pack.rivers.filter(r => r.i === id || r.parent === id || r.basin === id).map(r => r.i); riversToRemove.forEach(r => rivers.select("#river" + r).remove()); cells.r.forEach((r, i) => { if (!r || !riversToRemove.includes(r)) return; cells.r[i] = 0; cells.fl[i] = grid.cells.prec[cells.g[i]]; cells.conf[i] = 0; }); pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i)); }; const getBasin = function (r) { const parent = pack.rivers.find(river => river.i === r)?.parent; if (!parent || r === parent) return r; return getBasin(parent); }; const getBorderPoint = i => { const [x, y] = pack.cells.p[i]; const min = Math.min(y, graphHeight - y, x, graphWidth - x); if (min === y) return [x, 0]; else if (min === graphHeight - y) return [x, graphHeight]; else if (min === x) return [0, y]; return [graphWidth, y]; }; return {generate, alterHeights, resolveDepressions, addMeandering, getPath: getRiverPath, specify, getName, getBasin, remove}; });