Fantasy-Map-Generator/src/utils/graphUtils.ts
2022-06-25 17:59:03 +03:00

244 lines
7.8 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import {TIME} from "../config/logging";
import {createTypedArray} from "./arrayUtils";
import {byId} from "./shorthands";
// check if new grid graph should be generated or we can use the existing one
export function shouldRegenerateGrid(grid) {
const cellsDesired = +byId("pointsInput").dataset.cells;
if (cellsDesired !== grid.cellsDesired) return true;
const newSpacing = rn(Math.sqrt((graphWidth * graphHeight) / cellsDesired), 2);
const newCellsX = Math.floor((graphWidth + 0.5 * newSpacing - 1e-10) / newSpacing);
const newCellsY = Math.floor((graphHeight + 0.5 * newSpacing - 1e-10) / newSpacing);
return grid.spacing !== newSpacing || grid.cellsX !== newCellsX || grid.cellsY !== newCellsY;
}
export function generateGrid() {
Math.random = aleaPRNG(seed); // reset PRNG
const {spacing, cellsDesired, boundary, points, cellsX, cellsY} = placePoints();
const {cells, vertices} = calculateVoronoi(points, boundary);
return {spacing, cellsDesired, boundary, points, cellsX, cellsY, cells, vertices};
}
// place random points to calculate Voronoi diagram
function placePoints() {
TIME && console.time("placePoints");
const cellsDesired = +byId("pointsInput").dataset.cells;
const spacing = rn(Math.sqrt((graphWidth * graphHeight) / cellsDesired), 2); // spacing between points before jirrering
const boundary = getBoundaryPoints(graphWidth, graphHeight, spacing);
const points = getJitteredGrid(graphWidth, graphHeight, spacing); // points of jittered square grid
const cellsX = Math.floor((graphWidth + 0.5 * spacing - 1e-10) / spacing);
const cellsY = Math.floor((graphHeight + 0.5 * spacing - 1e-10) / spacing);
TIME && console.timeEnd("placePoints");
return {spacing, cellsDesired, boundary, points, cellsX, cellsY};
}
// calculate Delaunay and then Voronoi diagram
export function calculateVoronoi(points: number[][], boundary: number[][]) {
TIME && console.time("calculateDelaunay");
const allPoints = points.concat(boundary);
const delaunay = Delaunator.from(allPoints);
TIME && console.timeEnd("calculateDelaunay");
TIME && console.time("calculateVoronoi");
const voronoi = new Voronoi(delaunay, allPoints, points.length);
const cells = voronoi.cells;
cells.i = createTypedArray({maxValue: points.length, length: points.length}).map((_, i) => i); // array of indexes
const vertices = voronoi.vertices;
TIME && console.timeEnd("calculateVoronoi");
return {cells, vertices};
}
// add points along map edge to pseudo-clip voronoi cells
function getBoundaryPoints(width: number, height: number, spacing: number) {
const offset = rn(-1 * spacing);
const bSpacing = spacing * 2;
const w = width - offset * 2;
const h = height - offset * 2;
const numberX = Math.ceil(w / bSpacing) - 1;
const numberY = Math.ceil(h / bSpacing) - 1;
const points = [];
for (let i = 0.5; i < numberX; i++) {
let x = Math.ceil((w * i) / numberX + offset);
points.push([x, offset], [x, h + offset]);
}
for (let i = 0.5; i < numberY; i++) {
let y = Math.ceil((h * i) / numberY + offset);
points.push([offset, y], [w + offset, y]);
}
return points;
}
// get points on a regular square grid and jitter them a bit
function getJitteredGrid(width: number, height: number, spacing: number) {
const radius = spacing / 2; // square radius
const jittering = radius * 0.9; // max deviation
const doubleJittering = jittering * 2;
const jitter = () => Math.random() * doubleJittering - jittering;
let points = [];
for (let y = radius; y < height; y += spacing) {
for (let x = radius; x < width; x += spacing) {
const xj = Math.min(rn(x + jitter(), 2), width);
const yj = Math.min(rn(y + jitter(), 2), height);
points.push([xj, yj]);
}
}
return points;
}
// return cell index on a regular square grid
export function findGridCell(x: number, y: number, grid) {
return (
Math.floor(Math.min(y / grid.spacing, grid.cellsY - 1)) * grid.cellsX +
Math.floor(Math.min(x / grid.spacing, grid.cellsX - 1))
);
}
// return array of cell indexes in radius on a regular square grid
export function findGridAll(x: number, y: number, radius: number) {
const c = grid.cells.c;
let r = Math.floor(radius / grid.spacing);
let found = [findGridCell(x, y, grid)];
if (!r || radius === 1) return found;
if (r > 0) found = found.concat(c[found[0]]);
if (r > 1) {
let frontier = c[found[0]];
while (r > 1) {
let cycle = frontier.slice();
frontier = [];
cycle.forEach(function (s) {
c[s].forEach(function (e) {
if (found.indexOf(e) !== -1) return;
found.push(e);
frontier.push(e);
});
});
r--;
}
}
return found;
}
// return array of cell indexes in radius
export function findAll(x: number, y: number, radius: number) {
const found = pack.cells.q.findAll(x, y, radius);
return found.map(r => r[2]);
}
// get polygon points for packed cells knowing cell id
export function getPackPolygon(i: number) {
return pack.cells.v[i].map(v => pack.vertices.p[v]);
}
// return closest cell index
export function findCell(x: number, y: number, radius = Infinity) {
const found = pack.cells.q.find(x, y, radius);
return found ? found[2] : undefined;
}
// get polygon points for initial cells knowing cell id
export function getGridPolygon(i: number) {
return grid.cells.v[i].map(v => grid.vertices.p[v]);
}
// filter land cells
export function isLand(i: number) {
return pack.cells.h[i] >= 20;
}
// filter water cells
export function isWater(i: number) {
return pack.cells.h[i] < 20;
}
// findAll d3.quandtree search from https://bl.ocks.org/lwthatcher/b41479725e0ff2277c7ac90df2de2b5e
void (function addFindAll() {
const Quad = function (node, x0, y0, x1, y1) {
this.node = node;
this.x0 = x0;
this.y0 = y0;
this.x1 = x1;
this.y1 = y1;
};
const tree_filter = function (x, y, radius) {
var t = {x, y, x0: this._x0, y0: this._y0, x3: this._x1, y3: this._y1, quads: [], node: this._root};
if (t.node) {
t.quads.push(new Quad(t.node, t.x0, t.y0, t.x3, t.y3));
}
radiusSearchInit(t, radius);
var i = 0;
while ((t.q = t.quads.pop())) {
i++;
// Stop searching if this quadrant cant contain a closer node.
if (
!(t.node = t.q.node) ||
(t.x1 = t.q.x0) > t.x3 ||
(t.y1 = t.q.y0) > t.y3 ||
(t.x2 = t.q.x1) < t.x0 ||
(t.y2 = t.q.y1) < t.y0
)
continue;
// Bisect the current quadrant.
if (t.node.length) {
t.node.explored = true;
var xm = (t.x1 + t.x2) / 2,
ym = (t.y1 + t.y2) / 2;
t.quads.push(
new Quad(t.node[3], xm, ym, t.x2, t.y2),
new Quad(t.node[2], t.x1, ym, xm, t.y2),
new Quad(t.node[1], xm, t.y1, t.x2, ym),
new Quad(t.node[0], t.x1, t.y1, xm, ym)
);
// Visit the closest quadrant first.
if ((t.i = ((y >= ym) << 1) | (x >= xm))) {
t.q = t.quads[t.quads.length - 1];
t.quads[t.quads.length - 1] = t.quads[t.quads.length - 1 - t.i];
t.quads[t.quads.length - 1 - t.i] = t.q;
}
}
// Visit this point. (Visiting coincident points isnt necessary!)
else {
var dx = x - +this._x.call(null, t.node.data),
dy = y - +this._y.call(null, t.node.data),
d2 = dx * dx + dy * dy;
radiusSearchVisit(t, d2);
}
}
return t.result;
};
d3.quadtree.prototype.findAll = tree_filter;
var radiusSearchInit = function (t, radius) {
t.result = [];
(t.x0 = t.x - radius), (t.y0 = t.y - radius);
(t.x3 = t.x + radius), (t.y3 = t.y + radius);
t.radius = radius * radius;
};
var radiusSearchVisit = function (t, d2) {
t.node.data.scanned = true;
if (d2 < t.radius) {
do {
t.result.push(t.node.data);
t.node.data.selected = true;
} while ((t.node = t.node.next));
}
};
})();