Fantasy-Map-Generator/modules/river-generator.js
2021-02-28 13:32:04 +03:00

399 lines
No EOL
16 KiB
JavaScript

(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.Rivers = factory());
}(this, (function () {'use strict';
const generate = function(changeHeights = true) {
TIME && console.time('generateRivers');
Math.random = aleaPRNG(seed);
const cells = pack.cells, p = cells.p, features = pack.features;
const riversData = []; // rivers data
cells.fl = new Uint16Array(cells.i.length); // water flux array
cells.r = new Uint16Array(cells.i.length); // rivers array
cells.conf = new Uint8Array(cells.i.length); // confluences array
let riverNext = 1; // first river id is 1
markupLand();
const h = alterHeights();
removeStoredLakeData();
resolveDepressions(h);
drainWater();
defineRivers();
cleanupLakeData();
if (changeHeights) cells.h = Uint8Array.from(h); // apply changed heights as basic one
TIME && console.timeEnd('generateRivers');
// build distance field in cells from water (cells.t)
function markupLand() {
const q = t => cells.i.filter(i => cells.t[i] === t);
for (let t = 2, queue = q(t); queue.length; t++, queue = q(t)) {
queue.forEach(i => cells.c[i].forEach(c => {
if (!cells.t[c]) cells.t[c] = t+1;
}));
}
}
// height with added t value to make map less depressed
function alterHeights() {
const h = Array.from(cells.h)
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + cells.t[i] / 100)
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + d3.mean(cells.c[i].map(c => cells.t[c])) / 10000);
return h;
}
function removeStoredLakeData() {
features.forEach(f => {
delete f.flux;
delete f.inlets;
delete f.outlet;
delete f.height;
});
}
function drainWater() {
const MIN_FLUX_TO_FORM_RIVER = 30;
const land = cells.i.filter(i => h[i] >= 20).sort((a,b) => h[b] - h[a]);
const lakeOutCells = new Uint16Array(cells.i.length); // to enumerate lake outlet positions
features.forEach(f => {
if (f.type !== "lake") return;
const gridCell = cells.g[f.firstCell];
// lake possible outlet: cell around with min height
f.outCell = f.shoreline[d3.scan(f.shoreline, (a,b) => h[a] - h[b])];
lakeOutCells[f.outCell] = f.i;
// default flux: sum of precipition around lake first cell
f.flux = rn(d3.sum(f.shoreline.map(c => grid.cells.prec[cells.g[c]])) / 2);
// temperature and evaporation to detect closed lakes
f.temp = f.cells < 6 ? grid.cells.temp[gridCell] : rn(d3.mean(f.shoreline.map(c => grid.cells.temp[cells.g[c]])), 1);
const height = (f.height - 18) ** heightExponentInput.value; // height in meters
const evaporation = (700 * (f.temp + .006 * height) / 50 + 75) / (80 - f.temp); // based on Penman formula, [1-11]
f.evaporation = rn(evaporation * f.cells);
});
land.forEach(function(i) {
cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation
const x = p[i][0], y = p[i][1];
// create lake outlet if flux > evaporation
const lakes = !lakeOutCells[i] ? [] : features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation);
for (const lake of lakes) {
const lakeCell = cells.c[i].find(c => h[c] < 20 && cells.f[c] === lake.i);
// allow chain lakes to retain identity
if (cells.r[lakeCell] !== lake.river) {
const sameRiver = cells.c[lakeCell].some(c => cells.r[c] === lake.river);
if (sameRiver) {
cells.r[lakeCell] = lake.river;
riversData.push({river: lake.river, cell: lakeCell, x: p[lakeCell][0], y: p[lakeCell][1]});
} else {
cells.r[lakeCell] = riverNext;
riversData.push({river: riverNext, cell: lakeCell, x: p[lakeCell][0], y: p[lakeCell][1]});
riverNext++;
}
}
lake.outlet = cells.r[lakeCell];
cells.fl[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
flowDown(i, cells.fl[i], cells.fl[lakeCell], lake.outlet);
}
// assign all tributary rivers to outlet basin
for (let outlet = lakes[0]?.outlet, l = 0; l < lakes.length; l++) {
lakes[l].inlets?.forEach(fork => riversData.find(r => r.river === fork).parent = outlet);
}
// near-border cell: pour water out of the screen
if (cells.b[i] && cells.r[i]) {
const to = [];
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
if (min === y) {to[0] = x; to[1] = 0;} else
if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else
if (min === x) {to[0] = 0; to[1] = y;} else
if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;}
riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1]});
return;
}
// downhill cell (make sure it's not in the source lake)
const min = lakeOutCells[i]
? cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c])).sort((a, b) => h[a] - h[b])[0]
: cells.c[i].sort((a, b) => h[a] - h[b])[0];
if (cells.fl[i] < MIN_FLUX_TO_FORM_RIVER) {
if (h[min] >= 20) cells.fl[min] += cells.fl[i];
return; // flux is too small to operate as river
}
// proclaim a new river
if (!cells.r[i]) {
cells.r[i] = riverNext;
riversData.push({river: riverNext, cell: i, x, y});
riverNext++;
}
flowDown(min, cells.fl[min], cells.fl[i], cells.r[i], i);
});
}
function flowDown(toCell, toFlux, fromFlux, river, fromCell = 0) {
if (cells.r[toCell]) {
// downhill cell already has river assigned
if (toFlux < fromFlux) {
cells.conf[toCell] = cells.fl[toCell]; // mark confluence
if (h[toCell] >= 20) riversData.find(r => r.river === cells.r[toCell]).parent = river; // min river is a tributary of current river
cells.r[toCell] = river; // re-assign river if downhill part has less flux
} else {
cells.conf[toCell] += fromFlux; // mark confluence
if (h[toCell] >= 20) riversData.find(r => r.river === river).parent = cells.r[toCell]; // current river is a tributary of min river
}
} else cells.r[toCell] = river; // assign the river to the downhill cell
if (h[toCell] < 20) {
// pour water to the water body
const haven = fromCell ? cells.haven[fromCell] : toCell;
riversData.push({river, cell: haven, x: p[toCell][0], y: p[toCell][1]});
const waterBody = features[cells.f[toCell]];
if (waterBody.type === "lake") {
if (!waterBody.river || fromFlux > waterBody.enteringFlux) {
waterBody.river = river;
waterBody.enteringFlux = fromFlux;
}
waterBody.flux = waterBody.flux + fromFlux;
waterBody.inlets ? waterBody.inlets.push(river) : waterBody.inlets = [river];
}
} else {
// propagate flux and add next river segment
cells.fl[toCell] += fromFlux;
riversData.push({river, cell: toCell, x: p[toCell][0], y: p[toCell][1]});
}
}
function defineRivers() {
pack.rivers = []; // rivers data
const riverPaths = []; // temporary data for all rivers
for (let r = 1; r <= riverNext; r++) {
const riverSegments = riversData.filter(d => d.river === r);
if (riverSegments.length > 2) {
const source = riverSegments[0], mouth = riverSegments[riverSegments.length-2];
const riverEnhanced = addMeandring(riverSegments);
let width = rn(.8 + Math.random() * .4, 1); // river width modifier [.2, 10]
let increment = rn(.8 + Math.random() * .6, 1); // river bed widening modifier [.01, 3]
const [path, length] = getPath(riverEnhanced, width, increment, cells.h[source.cell] >= 20 ? .1 : .6);
riverPaths.push([r, path, width, increment]);
const parent = source.parent || 0;
pack.rivers.push({i:r, parent, length, source:source.cell, mouth:mouth.cell});
} else {
// remove too short rivers
riverSegments.filter(s => cells.r[s.cell] === r).forEach(s => cells.r[s.cell] = 0);
}
}
// drawRivers
rivers.selectAll("path").remove();
rivers.selectAll("path").data(riverPaths).enter()
.append("path").attr("d", d => d[1]).attr("id", d => "river"+d[0])
.attr("data-width", d => d[2]).attr("data-increment", d => d[3]);
}
function cleanupLakeData() {
for (const feature of features) {
if (feature.type !== "lake") continue;
delete feature.river;
delete feature.enteringFlux;
delete feature.shoreline;
delete feature.outCell;
feature.height = rn(feature.height);
const inlets = feature.inlets?.filter(r => pack.rivers.find(river => river.i === r));
if (!inlets || !inlets.length) delete feature.inlets;
else feature.inlets = inlets;
const outlet = feature.outlet && pack.rivers.find(river => river.i === feature.outlet);
if (!outlet) delete feature.outlet;
}
}
}
// depression filling algorithm (for a correct water flux modeling)
const resolveDepressions = function(h) {
const {cells, features} = pack;
const lakes = features.filter(f => f.type === "lake");
lakes.forEach(l => {
const uniqueCells = new Set();
l.vertices.forEach(v => pack.vertices.c[v].forEach(c => cells.h[c] >= 20 && uniqueCells.add(c)));
l.shoreline = [...uniqueCells];
l.height = 21;
});
const land = cells.i.filter(i => h[i] >= 20 && h[i] < 100 && !cells.b[i]); // exclude near-border cells
land.sort((a,b) => h[b] - h[a]); // highest cells go first
let depressions = Infinity;
for (let l = 0; depressions && l < 100; l++) {
depressions = 0;
for (const l of lakes) {
const minHeight = d3.min(l.shoreline.map(s => h[s]));
if (minHeight >= 100 || l.height > minHeight) continue;
l.height = minHeight + 1;
depressions++;
}
for (const i of land) {
const minHeight = d3.min(cells.c[i].map(c => cells.t[c] > 0 ? h[c] : pack.features[cells.f[c]].height || h[c]));
if (minHeight >= 100 || h[i] > minHeight) continue;
h[i] = minHeight + 1;
depressions++;
}
}
depressions && ERROR && console.error("Heightmap is depressed. Issues with rivers expected. Remove depressed areas to resolve");
}
// add more river points on 1/3 and 2/3 of length
const addMeandring = function(segments, rndFactor = 0.3) {
const riverEnhanced = []; // to store enhanced segments
let side = 1; // to control meandring direction
for (let s = 0; s < segments.length; s++) {
const sX = segments[s].x, sY = segments[s].y; // segment start coordinates
const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence
riverEnhanced.push([sX, sY, c]);
if (s+1 === segments.length) break; // do not enhance last segment
const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates
const angle = Math.atan2(eY - sY, eX - sX);
const sin = Math.sin(angle), cos = Math.cos(angle);
const serpentine = 1 / (s + 1) + 0.3;
const meandr = serpentine + Math.random() * rndFactor;
if (P(.5)) side *= -1; // change meandring direction in 50%
const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2;
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
if (dist2 > 64 || (dist2 > 16 && segments.length < 6)) {
const p1x = (sX * 2 + eX) / 3 + side * -sin * meandr;
const p1y = (sY * 2 + eY) / 3 + side * cos * meandr;
if (P(.2)) side *= -1; // change 2nd extra point meandring direction in 20%
const p2x = (sX + eX * 2) / 3 + side * sin * meandr;
const p2y = (sY + eY * 2) / 3 + side * cos * meandr;
riverEnhanced.push([p1x, p1y], [p2x, p2y]);
// if dist is medium or river is small add 1 extra middlepoint
} else if (dist2 > 16 || segments.length < 6) {
const p1x = (sX + eX) / 2 + side * -sin * meandr;
const p1y = (sY + eY) / 2 + side * cos * meandr;
riverEnhanced.push([p1x, p1y]);
}
}
return riverEnhanced;
}
const getPath = function(points, width = 1, increment = 1, starting = .1) {
let offset, extraOffset = starting; // starting river width (to make river source visible)
const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length
const widening = rn((1000 + (riverLength * 30)) * increment);
const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon
const last = points.length - 1;
const factor = riverLength / points.length;
// first point
let x = points[0][0], y = points[0][1], c;
let angle = Math.atan2(y - points[1][1], x - points[1][0]);
let sin = Math.sin(angle), cos = Math.cos(angle);
let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset;
riverPointsLeft.push([xLeft, yLeft]);
let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset;
riverPointsRight.unshift([xRight, yRight]);
// middle points
for (let p = 1; p < last; p++) {
x = points[p][0], y = points[p][1], c = points[p][2] || 0;
const xPrev = points[p-1][0], yPrev = points[p - 1][1];
const xNext = points[p+1][0], yNext = points[p + 1][1];
angle = Math.atan2(yPrev - yNext, xPrev - xNext);
sin = Math.sin(angle), cos = Math.cos(angle);
offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * width) + extraOffset;
const confOffset = Math.atan(c * 5 / widening);
extraOffset += confOffset;
xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset);
riverPointsLeft.push([xLeft, yLeft]);
xRight = x + sin * offset, yRight = y + -cos * offset;
riverPointsRight.unshift([xRight, yRight]);
}
// end point
x = points[last][0], y = points[last][1], c = points[last][2];
if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence
angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x);
sin = Math.sin(angle), cos = Math.cos(angle);
xLeft = x + -sin * offset, yLeft = y + cos * offset;
riverPointsLeft.push([xLeft, yLeft]);
xRight = x + sin * offset, yRight = y + -cos * offset;
riverPointsRight.unshift([xRight, yRight]);
// generate polygon path and return
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
const right = lineGen(riverPointsRight);
let left = lineGen(riverPointsLeft);
left = left.substring(left.indexOf("C"));
return [round(right + left, 2), rn(riverLength, 2)];
}
const specify = function() {
const rivers = pack.rivers;
if (!rivers.length) return;
Math.random = aleaPRNG(seed);
const tresholdElement = Math.ceil(rivers.length * .15);
const smallLength = rivers.map(r => r.length || 0).sort((a, b) => a-b)[tresholdElement];
const smallType = {"Creek":9, "River":3, "Brook":3, "Stream":1}; // weighted small river types
for (const r of rivers) {
r.basin = getBasin(r.i, r.parent);
r.name = getName(r.mouth);
const small = r.length < smallLength;
r.type = r.parent && !(r.i%6) ? small ? "Branch" : "Fork" : small ? rw(smallType) : "River";
}
}
const getName = function(cell) {
return Names.getCulture(pack.cells.culture[cell]);
}
// remove river and all its tributaries
const remove = function(id) {
const cells = pack.cells;
const riversToRemove = pack.rivers.filter(r => r.i === id || getBasin(r.i, r.parent, id) === id).map(r => r.i);
riversToRemove.forEach(r => rivers.select("#river"+r).remove());
cells.r.forEach((r, i) => {
if (!r || !riversToRemove.includes(r)) return;
cells.r[i] = 0;
cells.fl[i] = grid.cells.prec[cells.g[i]];
cells.conf[i] = 0;
});
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
}
const getBasin = function(r, p, e) {
while (p && r !== p && r !== e) {
const parent = pack.rivers.find(r => r.i === p);
if (!parent) return r;
r = parent.i;
p = parent.parent;
}
return r;
}
return {generate, resolveDepressions, addMeandring, getPath, specify, getName, getBasin, remove};
})));