mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-16 17:31:24 +01:00
253 lines
No EOL
9.5 KiB
JavaScript
253 lines
No EOL
9.5 KiB
JavaScript
(function (global, factory) {
|
|
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
|
|
typeof define === 'function' && define.amd ? define(factory) :
|
|
(global.Routes = factory());
|
|
}(this, (function () {'use strict';
|
|
|
|
const getRoads = function() {
|
|
console.time("generateMainRoads");
|
|
const cells = pack.cells, burgs = pack.burgs.filter(b => b.i && !b.removed);
|
|
const capitals = burgs.filter(b => b.capital);
|
|
if (capitals.length < 2) return []; // not enought capitals to build main roads
|
|
const paths = []; // array to store path segments
|
|
|
|
for (const b of capitals) {
|
|
const connect = capitals.filter(c => c.i > b.i && c.feature === b.feature);
|
|
if (!connect.length) continue;
|
|
const farthest = d3.scan(connect, (a, c) => ((c.y - b.y) ** 2 + (c.x - b.x) ** 2) - ((a.y - b.y) ** 2 + (a.x - b.x) ** 2));
|
|
const [from, exit] = findLandPath(b.cell, connect[farthest].cell, null);
|
|
const segments = restorePath(b.cell, exit, "main", from);
|
|
segments.forEach(s => paths.push(s));
|
|
}
|
|
|
|
cells.i.forEach(i => cells.s[i] += cells.road[i] / 2); // add roads to suitability score
|
|
console.timeEnd("generateMainRoads");
|
|
return paths;
|
|
}
|
|
|
|
const getTrails = function() {
|
|
console.time("generateTrails");
|
|
const cells = pack.cells, burgs = pack.burgs.filter(b => b.i && !b.removed);
|
|
if (burgs.length < 2) return []; // not enought capitals to build main roads
|
|
|
|
let paths = []; // array to store path segments
|
|
for (const f of pack.features.filter(f => f.land)) {
|
|
const isle = burgs.filter(b => b.feature === f.i); // burgs on island
|
|
if (isle.length < 2) continue;
|
|
|
|
isle.forEach(function(b, i) {
|
|
let path = [];
|
|
if (!i) {
|
|
const farthest = d3.scan(isle, (a, c) => ((c.y - b.y) ** 2 + (c.x - b.x) ** 2) - ((a.y - b.y) ** 2 + (a.x - b.x) ** 2));
|
|
const to = isle[farthest].cell;
|
|
if (cells.road[to]) return;
|
|
const [from, exit] = findLandPath(b.cell, to, null);
|
|
path = restorePath(b.cell, exit, "small", from);
|
|
} else {
|
|
if (cells.road[b.cell]) return;
|
|
const [from, exit] = findLandPath(b.cell, null, true);
|
|
if (exit === null) return;
|
|
path = restorePath(b.cell, exit, "small", from);
|
|
}
|
|
if (path) paths = paths.concat(path);
|
|
});
|
|
}
|
|
|
|
console.timeEnd("generateTrails");
|
|
return paths;
|
|
}
|
|
|
|
const getSearoutes = function() {
|
|
console.time("generateSearoutes");
|
|
const cells = pack.cells, allPorts = pack.burgs.filter(b => b.port > 0 && !b.removed);
|
|
if (allPorts.length < 2) return [];
|
|
const bodies = new Set(allPorts.map(b => b.port)); // features with ports
|
|
let from = [], exit = null, path = [], paths = []; // array to store path segments
|
|
|
|
bodies.forEach(function(f) {
|
|
const ports = allPorts.filter(b => b.port === f);
|
|
if (ports.length < 2) return;
|
|
const first = ports[0].cell;
|
|
|
|
// directly connect first port with the farthest one on the same island to remove gap
|
|
if (pack.features[f].type !== "lake") {
|
|
const portsOnIsland = ports.filter(b => cells.f[b.cell] === cells.f[first]);
|
|
if (portsOnIsland.length > 3) {
|
|
const opposite = ports[d3.scan(portsOnIsland, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
|
|
//debug.append("circle").attr("r", 1).attr("fill", "blue").attr("cx", pack.cells.p[first][0]).attr("cy", pack.cells.p[first][1])
|
|
//debug.append("circle").attr("r", 1).attr("fill", "green").attr("cx", pack.cells.p[opposite][0]).attr("cy", pack.cells.p[opposite][1])
|
|
[from, exit] = findOceanPath(opposite, first);
|
|
from[first] = cells.haven[first];
|
|
path = restorePath(opposite, first, "ocean", from);
|
|
paths = paths.concat(path);
|
|
}
|
|
}
|
|
|
|
// directly connect first port with the farthest one
|
|
const farthest = ports[d3.scan(ports, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
|
|
[from, exit] = findOceanPath(farthest, first);
|
|
from[first] = cells.haven[first];
|
|
path = restorePath(farthest, first, "ocean", from);
|
|
paths = paths.concat(path);
|
|
|
|
// indirectly connect first port with all other ports
|
|
if (ports.length < 3) return;
|
|
for (const p of ports) {
|
|
if (p.cell === first || p.cell === farthest) continue;
|
|
[from, exit] = findOceanPath(p.cell, first, true);
|
|
//from[exit] = cells.haven[exit];
|
|
const path = restorePath(p.cell, exit, "ocean", from);
|
|
paths = paths.concat(path);
|
|
}
|
|
|
|
});
|
|
|
|
console.timeEnd("generateSearoutes");
|
|
return paths;
|
|
}
|
|
|
|
const draw = function(main, small, ocean) {
|
|
console.time("drawRoutes");
|
|
const cells = pack.cells, burgs = pack.burgs;
|
|
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
|
|
|
|
// main routes
|
|
roads.selectAll("path").data(main).enter().append("path")
|
|
.attr("id", (d, i) => "road" + i)
|
|
.attr("d", d => round(lineGen(d.map(c => {
|
|
const b = cells.burg[c];
|
|
const x = b ? burgs[b].x : cells.p[c][0];
|
|
const y = b ? burgs[b].y : cells.p[c][1];
|
|
return [x, y];
|
|
})), 1));
|
|
|
|
// small routes
|
|
trails.selectAll("path").data(small).enter().append("path")
|
|
.attr("id", (d, i) => "trail" + i)
|
|
.attr("d", d => round(lineGen(d.map(c => {
|
|
const b = cells.burg[c];
|
|
const x = b ? burgs[b].x : cells.p[c][0];
|
|
const y = b ? burgs[b].y : cells.p[c][1];
|
|
return [x, y];
|
|
})), 1));
|
|
|
|
// ocean routes
|
|
lineGen.curve(d3.curveBundle.beta(1));
|
|
searoutes.selectAll("path").data(ocean).enter().append("path")
|
|
.attr("id", (d, i) => "searoute" + i)
|
|
.attr("d", d => round(lineGen(d.map(c => {
|
|
const b = cells.burg[c];
|
|
const x = b ? burgs[b].x : cells.p[c][0];
|
|
const y = b ? burgs[b].y : cells.p[c][1];
|
|
return [x, y];
|
|
})), 1));
|
|
|
|
console.timeEnd("drawRoutes");
|
|
}
|
|
|
|
const regenerate = function() {
|
|
routes.selectAll("path").remove();
|
|
pack.cells.road = new Uint16Array(pack.cells.i.length);
|
|
pack.cells.crossroad = new Uint16Array(pack.cells.i.length);
|
|
const main = getRoads();
|
|
const small = getTrails();
|
|
const ocean = getSearoutes();
|
|
draw(main, small, ocean);
|
|
}
|
|
|
|
return {getRoads, getTrails, getSearoutes, draw, regenerate};
|
|
|
|
// Dijkstra's algorithm to find a land path
|
|
function findLandPath(start, exit = null, toRoad = null) {
|
|
const cells = pack.cells;
|
|
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
|
|
const cost = [], from = [];
|
|
const basicCost = 10;
|
|
queue.queue({e: start, p: 0});
|
|
|
|
while (queue.length) {
|
|
const next = queue.dequeue(), n = next.e, p = next.p;
|
|
if (toRoad && cells.road[n]) return [from, n];
|
|
|
|
for (const c of cells.c[n]) {
|
|
if (cells.h[c] < 20) continue; // ignore water cells
|
|
const habitedCost = 100 - biomesData.habitability[cells.biome[c]];
|
|
const heightCost = Math.abs(cells.h[c] - cells.h[n]) * 10;
|
|
const cellCoast = basicCost + habitedCost + heightCost;
|
|
const totalCost = p + (cells.road[c] || cells.burg[c] ? cellCoast / 3 : cellCoast);
|
|
|
|
if (from[c] || totalCost >= cost[c]) continue;
|
|
from[c] = n;
|
|
if (c === exit) return [from, exit];
|
|
cost[c] = totalCost;
|
|
queue.queue({e: c, p: totalCost});
|
|
}
|
|
|
|
}
|
|
return [from, exit];
|
|
}
|
|
|
|
function restorePath(start, end, type, from) {
|
|
const cells = pack.cells;
|
|
const path = []; // to store all segments;
|
|
let segment = [], current = end, prev = end;
|
|
const score = type === "main" ? 5 : 1; // to incrade road score at cell
|
|
|
|
if (type === "ocean" || !cells.road[prev]) segment.push(end);
|
|
if (!cells.road[prev]) cells.road[prev] = score;
|
|
|
|
for (let i = 0, limit = 1000; i < limit; i++) {
|
|
if (!from[current]) break;
|
|
current = from[current];
|
|
|
|
if (cells.road[current]) {
|
|
if (segment.length) {
|
|
segment.push(current);
|
|
path.push(segment);
|
|
if (segment[0] !== end) {cells.road[segment[0]] += score; cells.crossroad[segment[0]] += score;}
|
|
if (current !== start) {cells.road[current] += score; cells.crossroad[current] += score;}
|
|
}
|
|
segment = [];
|
|
prev = current;
|
|
} else {
|
|
if (prev) segment.push(prev);
|
|
prev = null;
|
|
segment.push(current);
|
|
}
|
|
|
|
cells.road[current] += score;
|
|
if (current === start) break;
|
|
}
|
|
|
|
if (segment.length > 1) path.push(segment);
|
|
return path;
|
|
}
|
|
|
|
// find water paths
|
|
function findOceanPath(start, exit = null, toRoute = null) {
|
|
const cells = pack.cells;
|
|
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
|
|
const cost = [], from = [];
|
|
queue.queue({e: start, p: 0});
|
|
|
|
while (queue.length) {
|
|
const next = queue.dequeue(), n = next.e, p = next.p;
|
|
if (toRoute && n !== start && cells.road[n]) return [from, n];
|
|
|
|
for (const c of cells.c[n]) {
|
|
if (cells.h[c] >= 20) continue; // ignore land cells
|
|
const dist2 = (cells.p[c][1] - cells.p[n][1]) ** 2 + (cells.p[c][0] - cells.p[n][0]) ** 2;
|
|
const totalCost = p + (cells.road[c] ? 1 + dist2 / 2 : dist2 + (cells.t[c] ? 1 : 100));
|
|
|
|
if (from[c] || totalCost >= cost[c]) continue;
|
|
from[c] = n;
|
|
if (c === exit) return [from, exit];
|
|
cost[c] = totalCost;
|
|
queue.queue({e: c, p: totalCost});
|
|
}
|
|
|
|
}
|
|
return [from, exit];
|
|
}
|
|
|
|
}))); |