mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-16 17:31:24 +01:00
269 lines
9.4 KiB
JavaScript
269 lines
9.4 KiB
JavaScript
window.Routes = (function () {
|
|
const getRoads = function () {
|
|
TIME && console.time("generateMainRoads");
|
|
const cells = pack.cells;
|
|
const burgs = pack.burgs.filter(b => b.i && !b.removed);
|
|
const capitals = burgs.filter(b => b.capital).sort((a, b) => a.population - b.population);
|
|
|
|
if (capitals.length < 2) return []; // not enough capitals to build main roads
|
|
const paths = []; // array to store path segments
|
|
|
|
for (const b of capitals) {
|
|
const connect = capitals.filter(c => c.feature === b.feature && c !== b);
|
|
for (const t of connect) {
|
|
const [from, exit] = findLandPath(b.cell, t.cell, true);
|
|
const segments = restorePath(b.cell, exit, "main", from);
|
|
segments.forEach(s => paths.push(s));
|
|
}
|
|
}
|
|
|
|
cells.i.forEach(i => (cells.s[i] += cells.road[i] / 2)); // add roads to suitability score
|
|
TIME && console.timeEnd("generateMainRoads");
|
|
return paths;
|
|
};
|
|
|
|
const getTrails = function () {
|
|
TIME && console.time("generateTrails");
|
|
const cells = pack.cells;
|
|
const burgs = pack.burgs.filter(b => b.i && !b.removed);
|
|
|
|
if (burgs.length < 2) return []; // not enough burgs to build trails
|
|
|
|
let paths = []; // array to store path segments
|
|
for (const f of pack.features.filter(f => f.land)) {
|
|
const isle = burgs.filter(b => b.feature === f.i); // burgs on island
|
|
if (isle.length < 2) continue;
|
|
|
|
isle.forEach(function (b, i) {
|
|
let path = [];
|
|
if (!i) {
|
|
// build trail from the first burg on island
|
|
// to the farthest one on the same island or the closest road
|
|
const farthest = d3.scan(isle, (a, c) => (c.y - b.y) ** 2 + (c.x - b.x) ** 2 - ((a.y - b.y) ** 2 + (a.x - b.x) ** 2));
|
|
const to = isle[farthest].cell;
|
|
if (cells.road[to]) return;
|
|
const [from, exit] = findLandPath(b.cell, to, true);
|
|
path = restorePath(b.cell, exit, "small", from);
|
|
} else {
|
|
// build trail from all other burgs to the closest road on the same island
|
|
if (cells.road[b.cell]) return;
|
|
const [from, exit] = findLandPath(b.cell, null, true);
|
|
if (exit === null) return;
|
|
path = restorePath(b.cell, exit, "small", from);
|
|
}
|
|
if (path) paths = paths.concat(path);
|
|
});
|
|
}
|
|
|
|
TIME && console.timeEnd("generateTrails");
|
|
return paths;
|
|
};
|
|
|
|
const getSearoutes = function () {
|
|
TIME && console.time("generateSearoutes");
|
|
const {cells, burgs, features} = pack;
|
|
const allPorts = burgs.filter(b => b.port > 0 && !b.removed);
|
|
|
|
if (!allPorts.length) return [];
|
|
|
|
const bodies = new Set(allPorts.map(b => b.port)); // water features with ports
|
|
let paths = []; // array to store path segments
|
|
const connected = []; // store cell id of connected burgs
|
|
|
|
bodies.forEach(f => {
|
|
const ports = allPorts.filter(b => b.port === f); // all ports on the same feature
|
|
if (!ports.length) return;
|
|
|
|
if (features[f]?.border) addOverseaRoute(f, ports[0]);
|
|
|
|
// get inner-map routes
|
|
for (let s = 0; s < ports.length; s++) {
|
|
const source = ports[s].cell;
|
|
if (connected[source]) continue;
|
|
|
|
for (let t = s + 1; t < ports.length; t++) {
|
|
const target = ports[t].cell;
|
|
if (connected[target]) continue;
|
|
|
|
const [from, exit, passable] = findOceanPath(target, source, true);
|
|
if (!passable) continue;
|
|
|
|
const path = restorePath(target, exit, "ocean", from);
|
|
paths = paths.concat(path);
|
|
|
|
connected[source] = 1;
|
|
connected[target] = 1;
|
|
}
|
|
}
|
|
});
|
|
|
|
function addOverseaRoute(f, port) {
|
|
const {x, y, cell: source} = port;
|
|
const dist = p => Math.abs(p[0] - x) + Math.abs(p[1] - y);
|
|
const [x1, y1] = [
|
|
[0, y],
|
|
[x, 0],
|
|
[graphWidth, y],
|
|
[x, graphHeight]
|
|
].sort((a, b) => dist(a) - dist(b))[0];
|
|
const target = findCell(x1, y1);
|
|
|
|
if (cells.f[target] === f && cells.h[target] < 20) {
|
|
const [from, exit, passable] = findOceanPath(target, source, true);
|
|
|
|
if (passable) {
|
|
const path = restorePath(target, exit, "ocean", from);
|
|
paths = paths.concat(path);
|
|
last(path).push([x1, y1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TIME && console.timeEnd("generateSearoutes");
|
|
return paths;
|
|
};
|
|
|
|
const draw = function (main, small, water) {
|
|
TIME && console.time("drawRoutes");
|
|
const {cells, burgs} = pack;
|
|
const {burg, p} = cells;
|
|
|
|
const getBurgCoords = b => [burgs[b].x, burgs[b].y];
|
|
const getPathPoints = cells => cells.map(i => (Array.isArray(i) ? i : burg[i] ? getBurgCoords(burg[i]) : p[i]));
|
|
const getPath = segment => round(lineGen(getPathPoints(segment)), 1);
|
|
const getPathsHTML = (paths, type) => paths.map((path, i) => `<path id="${type}${i}" d="${getPath(path)}" />`).join("");
|
|
|
|
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
|
|
roads.html(getPathsHTML(main, "road"));
|
|
trails.html(getPathsHTML(small, "trail"));
|
|
|
|
lineGen.curve(d3.curveBundle.beta(1));
|
|
searoutes.html(getPathsHTML(water, "searoute"));
|
|
|
|
TIME && console.timeEnd("drawRoutes");
|
|
};
|
|
|
|
const regenerate = function () {
|
|
routes.selectAll("path").remove();
|
|
pack.cells.road = new Uint16Array(pack.cells.i.length);
|
|
pack.cells.crossroad = new Uint16Array(pack.cells.i.length);
|
|
const main = getRoads();
|
|
const small = getTrails();
|
|
const water = getSearoutes();
|
|
draw(main, small, water);
|
|
};
|
|
|
|
return {getRoads, getTrails, getSearoutes, draw, regenerate};
|
|
|
|
// Find a land path to a specific cell (exit), to a closest road (toRoad), or to all reachable cells (null, null)
|
|
function findLandPath(start, exit = null, toRoad = null) {
|
|
const cells = pack.cells;
|
|
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
|
|
const cost = [],
|
|
from = [];
|
|
queue.queue({e: start, p: 0});
|
|
|
|
while (queue.length) {
|
|
const next = queue.dequeue(),
|
|
n = next.e,
|
|
p = next.p;
|
|
if (toRoad && cells.road[n]) return [from, n];
|
|
|
|
for (const c of cells.c[n]) {
|
|
if (cells.h[c] < 20) continue; // ignore water cells
|
|
const stateChangeCost = cells.state && cells.state[c] !== cells.state[n] ? 400 : 0; // trails tend to lay within the same state
|
|
const habitability = biomesData.habitability[cells.biome[c]];
|
|
if (!habitability) continue; // avoid inhabitable cells (eg. lava, glacier)
|
|
const habitedCost = habitability ? Math.max(100 - habitability, 0) : 400; // routes tend to lay within populated areas
|
|
const heightChangeCost = Math.abs(cells.h[c] - cells.h[n]) * 10; // routes tend to avoid elevation changes
|
|
const heightCost = cells.h[c] > 80 ? cells.h[c] : 0; // routes tend to avoid mountainous areas
|
|
const cellCoast = 10 + stateChangeCost + habitedCost + heightChangeCost + heightCost;
|
|
const totalCost = p + (cells.road[c] || cells.burg[c] ? cellCoast / 3 : cellCoast);
|
|
|
|
if (from[c] || totalCost >= cost[c]) continue;
|
|
from[c] = n;
|
|
if (c === exit) return [from, exit];
|
|
cost[c] = totalCost;
|
|
queue.queue({e: c, p: totalCost});
|
|
}
|
|
}
|
|
return [from, exit];
|
|
}
|
|
|
|
function restorePath(start, end, type, from) {
|
|
const cells = pack.cells;
|
|
const path = []; // to store all segments;
|
|
let segment = [],
|
|
current = end,
|
|
prev = end;
|
|
const score = type === "main" ? 5 : 1; // to increase road score at cell
|
|
|
|
if (type === "ocean" || !cells.road[prev]) segment.push(end);
|
|
if (!cells.road[prev]) cells.road[prev] = score;
|
|
|
|
for (let i = 0, limit = 1000; i < limit; i++) {
|
|
if (!from[current]) break;
|
|
current = from[current];
|
|
|
|
if (cells.road[current]) {
|
|
if (segment.length) {
|
|
segment.push(current);
|
|
path.push(segment);
|
|
if (segment[0] !== end) {
|
|
cells.road[segment[0]] += score;
|
|
cells.crossroad[segment[0]] += score;
|
|
}
|
|
if (current !== start) {
|
|
cells.road[current] += score;
|
|
cells.crossroad[current] += score;
|
|
}
|
|
}
|
|
segment = [];
|
|
prev = current;
|
|
} else {
|
|
if (prev) segment.push(prev);
|
|
prev = null;
|
|
segment.push(current);
|
|
}
|
|
|
|
cells.road[current] += score;
|
|
if (current === start) break;
|
|
}
|
|
|
|
if (segment.length > 1) path.push(segment);
|
|
return path;
|
|
}
|
|
|
|
// find water paths
|
|
function findOceanPath(start, exit = null, toRoute = null) {
|
|
const cells = pack.cells,
|
|
temp = grid.cells.temp;
|
|
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
|
|
const cost = [],
|
|
from = [];
|
|
queue.queue({e: start, p: 0});
|
|
|
|
while (queue.length) {
|
|
const next = queue.dequeue(),
|
|
n = next.e,
|
|
p = next.p;
|
|
if (toRoute && n !== start && cells.road[n]) return [from, n, true];
|
|
|
|
for (const c of cells.c[n]) {
|
|
if (c === exit) {
|
|
from[c] = n;
|
|
return [from, exit, true];
|
|
}
|
|
if (cells.h[c] >= 20) continue; // ignore land cells
|
|
if (temp[cells.g[c]] <= -5) continue; // ignore cells with term <= -5
|
|
const dist2 = (cells.p[c][1] - cells.p[n][1]) ** 2 + (cells.p[c][0] - cells.p[n][0]) ** 2;
|
|
const totalCost = p + (cells.road[c] ? 1 + dist2 / 2 : dist2 + (cells.t[c] ? 1 : 100));
|
|
|
|
if (from[c] || totalCost >= cost[c]) continue;
|
|
(from[c] = n), (cost[c] = totalCost);
|
|
queue.queue({e: c, p: totalCost});
|
|
}
|
|
}
|
|
return [from, exit, false];
|
|
}
|
|
})();
|