Fantasy-Map-Generator/modules/submap.js
2022-04-06 18:16:21 +02:00

396 lines
13 KiB
JavaScript

"use strict";
/*
Experimental submaping module
*/
window.Submap = (function () {
const isWater = (map, id) => map.grid.cells.h[map.pack.cells.g[id]] < 20? true: false;
const inMap = (x,y) => x>0 && x<graphWidth && y>0 && y<graphHeight;
function resample(parentMap, projection, options) {
// generate new map based on an existing one (resampling parentMap)
// parentMap: {seed, grid, pack} from original map
// projection: map function from old to new coordinates or backwards
// prj(x,y,direction:bool) -> [x',y']
const stage = s => INFO && console.log('SUBMAP:', s)
const timeStart = performance.now();
const childMap = { grid, pack }
invokeActiveZooming();
// copy seed
seed = parentMap.seed;
Math.random = aleaPRNG(seed);
INFO && console.group("SubMap with seed: " + seed);
DEBUG && console.log("Using Options:", options);
// create new grid
applyMapSize();
placePoints();
calculateVoronoi(grid, grid.points);
drawScaleBar(scale);
const resampler = (points, qtree, f) => {
for(const [i,[x, y]] of points.entries()) {
const [tx, ty] = projection(x, y, true);
const oldid = qtree.find(tx,ty,Infinity)[2];
f(i, oldid);
}
}
stage("Resampling heightmap, temperature and precipitation.")
// resample heightmap from old WorldState
const n = grid.points.length;
grid.cells.h = new Uint8Array(n); // heightmap
grid.cells.temp = new Int8Array(n); // temperature
grid.cells.prec = new Int8Array(n); // precipitation
const reverseGridMap = new Uint32Array(n); // cellmap from new -> oldcell
const oldGrid = parentMap.grid;
// build cache old -> [newcelllist]
const forwardGridMap = parentMap.grid.points.map(_=>[]);
resampler(grid.points, parentMap.pack.cells.q, (id, oldid) => {
const cid = parentMap.pack.cells.g[oldid];
grid.cells.h[id] = oldGrid.cells.h[cid];
grid.cells.temp[id] = oldGrid.cells.temp[cid];
grid.cells.prec[id] = oldGrid.cells.prec[cid];
if (options.depressRivers) forwardGridMap[cid].push(id);
reverseGridMap[id] = cid;
})
// TODO: add smooth/noise function for h, temp, prec n times
// smooth heightmap
// smoothing should never change cell type (land->water or water->land)
if (options.smoothHeightMap) {
const gcells = grid.cells;
gcells.h.forEach((h,i) => {
const hs = gcells.c[i].map(c=>gcells.h[c])
hs.push(h)
gcells.h[i] = h>=20
? Math.max(d3.mean(hs),20)
: Math.min(d3.mean(hs),19);
});
}
if (options.depressRivers) {
stage("Generating riverbeds.")
const rbeds = new Uint16Array(grid.cells.i.length);
// and erode riverbeds
parentMap.pack.rivers.forEach(r =>
r.cells.forEach(oldpc => {
if (oldpc < 0) return; // ignore out-of-map marker (-1)
const oldc = parentMap.pack.cells.g[oldpc];
const targetCells = forwardGridMap[oldc];
if (!targetCells)
throw "TargetCell shouldn't be empty.";
targetCells.forEach(c => {
if (grid.cells.h[c]<20) return;
rbeds[c] = 1;
});
})
);
// raise every land cell a bit except riverbeds
grid.cells.h.forEach((h, i) => {
if (rbeds[i] || h<20) return;
grid.cells.h[i] = Math.min(h+2, 100);
});
}
stage("Detect features, ocean and generating lakes.")
markFeatures();
markupGridOcean();
// Warning: addLakesInDeepDepressions can be very slow!
if (options.addLakesInDepressions) {
addLakesInDeepDepressions();
openNearSeaLakes();
}
OceanLayers();
calculateMapCoordinates();
// calculateTemperatures();
// generatePrecipitation();
stage("Cell cleanup.")
reGraph();
// remove misclassified cells
stage("Define coastline.")
drawCoastline();
/****************************************************/
/* Packed Graph */
/****************************************************/
const oldCells = parentMap.pack.cells;
// const reverseMap = new Map(); // cellmap from new -> oldcell
const forwardMap = parentMap.pack.cells.p.map(_=>[]); // old -> [newcelllist]
const pn = pack.cells.i.length;
const cells = pack.cells;
cells.culture = new Uint16Array(pn);
cells.state = new Uint16Array(pn);
cells.burg = new Uint16Array(pn);
cells.religion = new Uint16Array(pn);
cells.road = new Uint16Array(pn);
cells.crossroad = new Uint16Array(pn);
cells.province = new Uint16Array(pn);
stage("Resampling culture, state and religion map.")
for(const [id, gridCellId] of cells.g.entries()) {
const oldGridId = reverseGridMap[gridCellId];
if (!oldGridId) throw new Error("Old grid Id must be defined!")
// find old parent's children
const oldChildren = oldCells.i.filter(oid=>oldCells.g[oid]==oldGridId);
let oldid; // matching cell on the original map
if (!oldChildren.length) {
// it *must* be a (deleted) deep ocean cell
if (!oldGrid.cells.h[oldGridId] < 20) {
console.error(`Warning, ${gridCellId} should be water cell, not ${oldGrid.cells.h[oldGridId]}`);
continue;
}
// find replacement: closest water cell
const [ox, oy] = cells.p[id]
const [tx, ty] = projection(x, y, true);
oldid = oldCells.q.find(tx,ty,Infinity)[2];
if (!oldid) {
console.warn("Warning, no id found in quad", id, "parent", gridCellId);
continue;
}
} else {
// find closest children (packcell) on the parent map
const distance = x => (x[0]-cells.p[id][0])**2 + (x[1]-cells.p[id][1])**2;
let d = Infinity;
oldChildren.forEach(oid => {
// must be the same type (this should be always true!)
if (isWater(parentMap, oid) !== isWater(childMap, id)) {
console.error(
"should be the same", oid, id, oldCells.t[oid], cells.t[id],
"oldparent", oldCells.g[oid], "newparent", cells.g[id],
"oldheight:", oldGrid.cells.h[oldCells.g[oid]],
"newheight", grid.cells.h[cells.g[id]])
throw new Error("should be the same type.")
}
const [oldpx, oldpy] = oldCells.p[oid];
const nd = distance(projection(oldpx, oldpx, false));
if (!nd) {
console.error("no distance!", nd, "old point", oldp)
}
if (nd < d) [d, oldid] = [nd, oid];
})
if (!oldid) {
console.warn("Warning, no match for", id, "parent", gridCellId, "in");
continue;
}
}
if (isWater(childMap, id) !== isWater(parentMap, oldid)) {
WARN && console.warn('Type discrepancy detected:', id, oldid, `${pack.cells.t[id]} != ${oldCells.t[oldid]}`);
}
cells.culture[id] = oldCells.culture[oldid];
cells.state[id] = oldCells.state[oldid];
cells.religion[id] = oldCells.religion[oldid];
cells.province[id] = oldCells.province[oldid];
// reverseMap.set(id, oldid)
forwardMap[oldid].push(id)
}
stage("Regenerating river network.")
Rivers.generate();
drawRivers();
Lakes.defineGroup();
// biome calculation based on (resampled) grid.cells.temp and prec
// it's safe to recalculate.
stage("Regenerating Biome.");
defineBiomes();
// recalculate suitability and population
// TODO: normalize according to the base-map
rankCells();
stage("Porting Cultures");
pack.cultures = parentMap.pack.cultures;
// fix culture centers
const validCultures = new Set(pack.cells.culture);
pack.cultures.forEach((c, i) => {
if (!i) return // ignore wildlands
if (!validCultures.has(i)) {
c.removed = true;
c.center = null;
return
}
const newCenters = forwardMap[c.center]
c.center = newCenters.length
? newCenters[0]
: pack.cells.culture.findIndex(x => x===i);
});
stage("Porting and locking burgs.");
copyBurgs(parentMap, projection, options);
// transfer states, mark states without land as removed.
stage("Porting states.");
const validStates = new Set(pack.cells.state);
pack.states = parentMap.pack.states;
// keep valid states and neighbors only
pack.states.forEach((s, i) => {
if (!s.i || s.removed) return; // ignore removed and neutrals
if (!validStates.has(i)) s.removed = true;
s.neighbors = s.neighbors.filter(n => validStates.has(n));
// find center
s.center = pack.burgs[s.capital].cell
? pack.burgs[s.capital].cell // capital is the best bet
: pack.cells.state.findIndex(x => x===i); // otherwise use the first valid cell
});
// transfer provinces, mark provinces without land as removed.
stage("Porting provinces.");
const validProvinces = new Set(pack.cells.province);
pack.provinces = parentMap.pack.provinces;
// mark uneccesary provinces
pack.provinces.forEach((p, i) => {
if (!p || p.removed) return;
if (!validProvinces.has(i)) {
p.removed = true;
return
}
const newCenters = forwardMap[p.center]
p.center = newCenters.length
? newCenters[0]
: pack.cells.province.findIndex(x => x===i);
});
BurgsAndStates.drawBurgs();
stage("Regenerating road network.");
Routes.regenerate();
drawStates();
drawBorders();
BurgsAndStates.drawStateLabels();
Rivers.specify();
Lakes.generateName();
stage("Porting military.");
for (const s of pack.states) {
if (!s.military) continue;
for (const m of s.military) {
[m.x, m.y] = projection(m.x, m.y, false);
[m.bx, m.by] = projection(m.bx, m.by, false);
const cc = forwardMap[m.cell];
m.cell = (cc && cc.length)? cc[0]: null;
}
s.military = s.military.filter(m=>m.cell).map((m, i) => ({...m, i}));
}
Military.redraw();
stage("Copying markers.");
for (const m of pack.markers) {
const [x, y] = projection(m.x, m.y, false);
if (!inMap(x, y)) {
Markers.deleteMarker(m.i);
} else {
m.x = x;
m.y = y;
m.cell = findCell(x, y);
if (options.lockMarkers) m.lock = true;
}
}
drawMarkers();
stage("Regenerating Zones.");
addZones();
Names.getMapName();
stage("Submap done.");
WARN && console.warn(`TOTAL: ${rn((performance.now() - timeStart) / 1000, 2)}s`);
showStatistics();
INFO && console.groupEnd("Generated Map " + seed);
}
/* find the nearest cell accepted by filter f *and* having at
* least one *neighbor* fulfilling filter g, up to cell-distance `max`
* returns [cellid, neighbor] tuple or undefined if no such cell.
*/
const findNearest = (f, g, max=3) => centerId => {
const met = new Set([centerId]); // cache, f might be expensive
const kernel = (c, dist) => {
const ncs = pack.cells.c[c].filter(nc => !met.has(nc));
const n = ncs.find(g);
if (f(c) && n) return [c, n];
if (dist >= max || !ncs.length) return undefined;
ncs.forEach(i => met.add(i));
const targets = ncs.filter(f)
let answer;
while (targets.length && !answer) answer = kernel(targets.shift(), dist+1);
return answer;
}
return kernel(centerId, 1);
}
function copyBurgs(parentMap, projection, options) {
const cells = pack.cells;
const childMap = { grid, pack }
const isCoast = c => cells.t[c] === 1
const isNearCoast = c => cells.t[c] === -1
pack.burgs = parentMap.pack.burgs;
// remap burgs to the best new cell
pack.burgs.forEach( (b, id) => {
if (id == 0) return; // skip empty city of neturals
[b.x, b.y] = projection(b.x, b.y, false);
// disable out-of-map (removed) burgs
if (!inMap(b.x,b.y)) {
b.removed = true;
b.cell = null;
return;
}
let cityCell = findCell(b.x, b.y);
const searchCoastCell = findNearest(isCoast, isNearCoast, 6);
// pull sunken burgs out of water
if (isWater(childMap, cityCell)) {
const res = searchCoastCell(cityCell)
if (!res) {
WARN && console.warn(`Burg ${b.name} sank like Atlantis. Unable to find coastal cells nearby. Try to reduce resample zoom level.`);
b.removed = true;
return;
}
const [coast, water] = res;
[b.x, b.y] = b.port? getMiddlePoint(coast, water): cells.p[coast];
if (b.port) b.port = cells.f[water];
b.cell = coast;
} if (b.port) {
// find coast for ports on land
const res = searchCoastCell(cityCell);
if (res) {
const [coast, water] = res;
[b.x, b.y] = getMiddlePoint(coast, water);
b.port = cells.f[water]; // copy feature number
b.cell = coast;
} else {
WARN && console.warn(`Can't find water near port ${b.name}. Increase search radius in searchCoastCell. (Removing port status)`);
b.cell = cityCell;
[b.x, b.y] = cells.p[cityCell];
b.port = 0;
}
} else {
b.cell = cityCell;
[b.x, b.y] = cells.p[cityCell];
}
if (!b.lock) b.lock = options.lockBurgs;
pack.cells.burg[b.cell] = id;
if (options.promoteTown) b.capital = 1;
});
}
// export
return { resample }
})();