Fantasy-Map-Generator/modules/voronoi.js

126 lines
No EOL
4.9 KiB
JavaScript

class Voronoi {
/**
* Creates a Voronoi diagram from the given Delaunator, a list of points, and the number of points. The Voronoi diagram is constructed using (I think) the {@link https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm|Bowyer-Watson Algorithm}
* @param {{triangles: Uint32Array, halfedges: Int32Array}} delaunay A {@link https://github.com/mapbox/delaunator/blob/master/index.js|Delaunator} instance
* @param {[number, number][]} points A list of coordinates.
* @param {number} pointsN The number of points.
*/
constructor(delaunay, points, pointsN) {
this.delaunay = delaunay;
this.points = points;
this.pointsN = pointsN;
this.cells = { v: [], c: [], b: [] }; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell
this.vertices = { p: [], v: [], c: [] }; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells
for (let e = 0; e < this.delaunay.triangles.length; e++) {
const p = this.delaunay.triangles[this.nextHalfedge(e)];
if (p < this.pointsN && !this.cells.c[p]) {
const edges = this.edgesAroundPoint(e);
this.cells.v[p] = edges.map(e => this.triangleOfEdge(e)); // cell: adjacent vertex
this.cells.c[p] = edges.map(e => this.delaunay.triangles[e]).filter(c => c < this.pointsN); // cell: adjacent valid cells
this.cells.b[p] = edges.length > this.cells.c[p].length ? 1 : 0; // cell: is border
}
const t = this.triangleOfEdge(e);
if (!this.vertices.p[t]) {
this.vertices.p[t] = this.triangleCenter(t); // vertex: coordinates
this.vertices.v[t] = this.trianglesAdjacentToTriangle(t); // vertex: adjacent vertices
this.vertices.c[t] = this.pointsOfTriangle(t); // vertex: adjacent cells
}
}
}
/**
*
* @param {number} t The index of the triangle
* @returns {[number, number, number]}
*/
pointsOfTriangle(t) {
return this.edgesOfTriangle(t).map(edge => this.delaunay.triangles[edge]);
}
/**
* Identifies what triangles are adjacent to the given triangle
* @param {number} t The index of the triangle
* @returns {number[]}
*/
trianglesAdjacentToTriangle(t) {
let triangles = [];
for (let edge of this.edgesOfTriangle(t)) {
let opposite = this.delaunay.halfedges[edge];
triangles.push(this.triangleOfEdge(opposite));
}
return triangles;
}
/**
*
* @param {number} start
* @returns {number[]}
*/
edgesAroundPoint(start) {
const result = [];
let incoming = start;
do {
result.push(incoming);
const outgoing = this.nextHalfedge(incoming);
incoming = this.delaunay.halfedges[outgoing];
} while (incoming !== -1 && incoming !== start && result.length < 20);
return result;
}
/**
* Returns the center of the triangle located at the given index.
* @param {number} t The index of the triangle
* @returns {number}
*/
triangleCenter(t) {
let vertices = this.pointsOfTriangle(t).map(p => this.points[p]);
return this.circumcenter(vertices[0], vertices[1], vertices[2]);
}
/**
* Gets all of the edges of a triangle starting at index t
* @param {number} t The index of the triangle
* @returns {[number, number, number]} The edges of the triangle
*/
edgesOfTriangle(t) { return [3 * t, 3 * t + 1, 3 * t + 2]; }
/**
* Identifies the triangle that corresponds to the given edge index
* @param {number} e The index of the edge
* @returns {number} The index of the triangle
*/
triangleOfEdge(e) { return Math.floor(e / 3); }
/**
* Determines the index of the next half edge of the current triangle in the this.delaunay.triangles array
* @param {number} e The index of the current half edge
* @returns {number} The index of the next half edge
*/
nextHalfedge(e) { return (e % 3 === 2) ? e - 2 : e + 1; }
/**
* Determines the index of the previous half edge of the current triangle in the this.delaunay.triangles array
* @param {number} e The index of the current half edge
* @returns {number} The index of the previous half edge
*/
prevHalfedge(e) { return (e % 3 === 0) ? e + 2 : e - 1; }
/**
* Finds the circumcenter of the triangle identified by points a, b, and c.
* @param {[number, number]} a
* @param {[number, number]} b
* @param {[number, number]} c
* @return {[number, number]} The coordinates of the circumcenter of the triangle.
*/
circumcenter(a, b, c) {
let ad = a[0] * a[0] + a[1] * a[1];
let bd = b[0] * b[0] + b[1] * b[1];
let cd = c[0] * c[0] + c[1] * c[1];
let D = 2 * (a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1]));
return [
Math.floor(1 / D * (ad * (b[1] - c[1]) + bd * (c[1] - a[1]) + cd * (a[1] - b[1]))),
Math.floor(1 / D * (ad * (c[0] - b[0]) + bd * (a[0] - c[0]) + cd * (b[0] - a[0])))
];
}
}