Fantasy-Map-Generator/modules/ocean-layers.js
2022-10-13 00:52:49 +03:00

92 lines
3.3 KiB
JavaScript

"use strict";
window.OceanLayers = (function () {
let cells, vertices, pointsN, used;
const OceanLayers = function OceanLayers() {
const outline = oceanLayers.attr("layers");
if (outline === "none") return;
TIME && console.time("drawOceanLayers");
lineGen.curve(d3.curveBasisClosed);
(cells = grid.cells), (pointsN = grid.cells.i.length), (vertices = grid.vertices);
const limits = outline === "random" ? randomizeOutline() : outline.split(",").map(s => +s);
const chains = [];
const opacity = rn(0.4 / limits.length, 2);
used = new Uint8Array(pointsN); // to detect already passed cells
for (const i of cells.i) {
const t = cells.t[i];
if (t > 0) continue;
if (used[i] || !limits.includes(t)) continue;
const start = findStart(i, t);
if (!start) continue;
used[i] = 1;
const chain = connectVertices(start, t); // vertices chain to form a path
if (chain.length < 4) continue;
const relax = 1 + t * -2; // select only n-th point
const relaxed = chain.filter((v, i) => !(i % relax) || vertices.c[v].some(c => c >= pointsN));
if (relaxed.length < 4) continue;
const points = clipPoly(
relaxed.map(v => vertices.p[v]),
1
);
chains.push([t, points]);
}
for (const t of limits) {
const layer = chains.filter(c => c[0] === t);
let path = layer.map(c => round(lineGen(c[1]))).join("");
if (path) oceanLayers.append("path").attr("d", path).attr("fill", "#ecf2f9").attr("fill-opacity", opacity);
}
// find eligible cell vertex to start path detection
function findStart(i, t) {
if (cells.b[i]) return cells.v[i].find(v => vertices.c[v].some(c => c >= pointsN)); // map border cell
return cells.v[i][cells.c[i].findIndex(c => cells.t[c] < t || !cells.t[c])];
}
TIME && console.timeEnd("drawOceanLayers");
};
function randomizeOutline() {
const limits = [];
let odd = 0.2;
for (let l = -9; l < 0; l++) {
if (P(odd)) {
odd = 0.2;
limits.push(l);
} else {
odd *= 2;
}
}
return limits;
}
// connect vertices to chain
function connectVertices(start, t) {
const chain = []; // vertices chain to form a path
for (let i = 0, current = start; i === 0 || (current !== start && i < 10000); i++) {
const prev = chain[chain.length - 1]; // previous vertex in chain
chain.push(current); // add current vertex to sequence
const c = vertices.c[current]; // cells adjacent to vertex
c.filter(c => cells.t[c] === t).forEach(c => (used[c] = 1));
const v = vertices.v[current]; // neighboring vertices
const c0 = !cells.t[c[0]] || cells.t[c[0]] === t - 1;
const c1 = !cells.t[c[1]] || cells.t[c[1]] === t - 1;
const c2 = !cells.t[c[2]] || cells.t[c[2]] === t - 1;
if (v[0] !== undefined && v[0] !== prev && c0 !== c1) current = v[0];
else if (v[1] !== undefined && v[1] !== prev && c1 !== c2) current = v[1];
else if (v[2] !== undefined && v[2] !== prev && c0 !== c2) current = v[2];
if (current === chain[chain.length - 1]) {
ERROR && console.error("Next vertex is not found");
break;
}
}
chain.push(chain[0]); // push first vertex as the last one
return chain;
}
return OceanLayers;
})();