mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 09:41:24 +01:00
366 lines
No EOL
14 KiB
JavaScript
366 lines
No EOL
14 KiB
JavaScript
(function (global, factory) {
|
|
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
|
|
typeof define === 'function' && define.amd ? define(factory) :
|
|
(global.Rivers = factory());
|
|
}(this, (function () {'use strict';
|
|
|
|
const generate = function(changeHeights = true) {
|
|
TIME && console.time('generateRivers');
|
|
Math.random = aleaPRNG(seed);
|
|
const cells = pack.cells, p = cells.p, features = pack.features;
|
|
|
|
const riversData = []; // rivers data
|
|
cells.fl = new Uint16Array(cells.i.length); // water flux array
|
|
cells.r = new Uint16Array(cells.i.length); // rivers array
|
|
cells.conf = new Uint8Array(cells.i.length); // confluences array
|
|
let riverNext = 1; // first river id is 1
|
|
|
|
markupLand();
|
|
const h = alterHeights();
|
|
removeStoredLakeData();
|
|
resolveDepressions(h);
|
|
drainWater();
|
|
defineRivers();
|
|
Lakes.cleanupLakeData();
|
|
|
|
if (changeHeights) cells.h = Uint8Array.from(h); // apply changed heights as basic one
|
|
|
|
TIME && console.timeEnd('generateRivers');
|
|
|
|
// build distance field in cells from water (cells.t)
|
|
function markupLand() {
|
|
const q = t => cells.i.filter(i => cells.t[i] === t);
|
|
for (let t = 2, queue = q(t); queue.length; t++, queue = q(t)) {
|
|
queue.forEach(i => cells.c[i].forEach(c => {
|
|
if (!cells.t[c]) cells.t[c] = t+1;
|
|
}));
|
|
}
|
|
}
|
|
|
|
// height with added t value to make map less depressed
|
|
function alterHeights() {
|
|
const h = Array.from(cells.h)
|
|
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + cells.t[i] / 100)
|
|
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + d3.mean(cells.c[i].map(c => cells.t[c])) / 10000);
|
|
return h;
|
|
}
|
|
|
|
function removeStoredLakeData() {
|
|
features.forEach(f => {
|
|
delete f.flux;
|
|
delete f.inlets;
|
|
delete f.outlet;
|
|
delete f.height;
|
|
});
|
|
}
|
|
|
|
function drainWater() {
|
|
const MIN_FLUX_TO_FORM_RIVER = 30;
|
|
const land = cells.i.filter(i => h[i] >= 20).sort((a,b) => h[b] - h[a]);
|
|
const lakeOutCells = Lakes.setClimateData(h);
|
|
|
|
land.forEach(function(i) {
|
|
cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation
|
|
const x = p[i][0], y = p[i][1];
|
|
|
|
// create lake outlet if flux > evaporation
|
|
const lakes = !lakeOutCells[i] ? [] : features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation);
|
|
for (const lake of lakes) {
|
|
const lakeCell = cells.c[i].find(c => h[c] < 20 && cells.f[c] === lake.i);
|
|
|
|
cells.fl[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
|
|
|
|
// allow chain lakes to retain identity
|
|
if (cells.r[lakeCell] !== lake.river) {
|
|
const sameRiver = cells.c[lakeCell].some(c => cells.r[c] === lake.river);
|
|
if (sameRiver) {
|
|
cells.r[lakeCell] = lake.river;
|
|
riversData.push({river: lake.river, cell: lakeCell, x: p[lakeCell][0], y: p[lakeCell][1], flux: cells.fl[lakeCell]});
|
|
} else {
|
|
cells.r[lakeCell] = riverNext;
|
|
riversData.push({river: riverNext, cell: lakeCell, x: p[lakeCell][0], y: p[lakeCell][1], flux: cells.fl[lakeCell]});
|
|
riverNext++;
|
|
}
|
|
}
|
|
|
|
lake.outlet = cells.r[lakeCell];
|
|
flowDown(i, cells.fl[i], cells.fl[lakeCell], lake.outlet);
|
|
}
|
|
|
|
// assign all tributary rivers to outlet basin
|
|
for (let outlet = lakes[0]?.outlet, l = 0; l < lakes.length; l++) {
|
|
lakes[l].inlets?.forEach(fork => riversData.find(r => r.river === fork).parent = outlet);
|
|
}
|
|
|
|
// near-border cell: pour water out of the screen
|
|
if (cells.b[i] && cells.r[i]) {
|
|
const to = [];
|
|
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
|
|
if (min === y) {to[0] = x; to[1] = 0;} else
|
|
if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else
|
|
if (min === x) {to[0] = 0; to[1] = y;} else
|
|
if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;}
|
|
riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1], flux: cells.fl[i]});
|
|
return;
|
|
}
|
|
|
|
// downhill cell (make sure it's not in the source lake)
|
|
const min = lakeOutCells[i]
|
|
? cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c])).sort((a, b) => h[a] - h[b])[0]
|
|
: cells.c[i].sort((a, b) => h[a] - h[b])[0];
|
|
|
|
if (cells.fl[i] < MIN_FLUX_TO_FORM_RIVER) {
|
|
if (h[min] >= 20) cells.fl[min] += cells.fl[i];
|
|
return; // flux is too small to operate as river
|
|
}
|
|
|
|
// proclaim a new river
|
|
if (!cells.r[i]) {
|
|
cells.r[i] = riverNext;
|
|
riversData.push({river: riverNext, cell: i, x, y, flux: cells.fl[i]});
|
|
riverNext++;
|
|
}
|
|
|
|
flowDown(min, cells.fl[min], cells.fl[i], cells.r[i], i);
|
|
});
|
|
}
|
|
|
|
function flowDown(toCell, toFlux, fromFlux, river, fromCell = 0) {
|
|
if (cells.r[toCell]) {
|
|
// downhill cell already has river assigned
|
|
if (toFlux < fromFlux) {
|
|
cells.conf[toCell] = cells.fl[toCell]; // mark confluence
|
|
if (h[toCell] >= 20) riversData.find(r => r.river === cells.r[toCell]).parent = river; // min river is a tributary of current river
|
|
cells.r[toCell] = river; // re-assign river if downhill part has less flux
|
|
} else {
|
|
cells.conf[toCell] += fromFlux; // mark confluence
|
|
if (h[toCell] >= 20) riversData.find(r => r.river === river).parent = cells.r[toCell]; // current river is a tributary of min river
|
|
}
|
|
} else cells.r[toCell] = river; // assign the river to the downhill cell
|
|
|
|
if (h[toCell] < 20) {
|
|
// pour water to the water body
|
|
const haven = fromCell ? cells.haven[fromCell] : toCell;
|
|
riversData.push({river, cell: haven, x: p[toCell][0], y: p[toCell][1], flux: fromFlux});
|
|
|
|
const waterBody = features[cells.f[toCell]];
|
|
if (waterBody.type === "lake") {
|
|
if (!waterBody.river || fromFlux > waterBody.enteringFlux) {
|
|
waterBody.river = river;
|
|
waterBody.enteringFlux = fromFlux;
|
|
}
|
|
waterBody.flux = waterBody.flux + fromFlux;
|
|
waterBody.inlets ? waterBody.inlets.push(river) : waterBody.inlets = [river];
|
|
}
|
|
} else {
|
|
// propagate flux and add next river segment
|
|
cells.fl[toCell] += fromFlux;
|
|
riversData.push({river, cell: toCell, x: p[toCell][0], y: p[toCell][1], flux: fromFlux});
|
|
}
|
|
}
|
|
|
|
function defineRivers() {
|
|
cells.r = new Uint16Array(cells.i.length); // re-initiate rivers array
|
|
pack.rivers = []; // rivers data
|
|
const riverPaths = [];
|
|
|
|
for (let r = 1; r <= riverNext; r++) {
|
|
const riverSegments = riversData.filter(d => d.river === r);
|
|
if (riverSegments.length < 3) continue;
|
|
|
|
for (const segment of riverSegments) {
|
|
const i = segment.cell;
|
|
if (cells.r[i]) continue;
|
|
if (cells.h[i] < 20) continue;
|
|
cells.r[i] = r;
|
|
}
|
|
|
|
const source = riverSegments[0].cell;
|
|
const mouth = riverSegments[riverSegments.length-2].cell;
|
|
|
|
const widthFactor = rn(.8 + Math.random() * .4, 1); // river width modifier [.8, 1.2]
|
|
const sourceWidth = cells.h[source] >= 20 ? .1 : rn(Math.min(Math.max((cells.fl[source] / 500) ** .4, .5), 1.7), 2);
|
|
|
|
const riverMeandered = addMeandering(riverSegments, sourceWidth * 10, .5);
|
|
const [path, length, offset] = getPath(riverMeandered, widthFactor, sourceWidth);
|
|
riverPaths.push([path, r]);
|
|
|
|
const parent = riverSegments[0].parent || 0;
|
|
const width = rn(offset ** 2, 2); // mounth width in km
|
|
const discharge = last(riverSegments).flux; // in m3/s
|
|
pack.rivers.push({i:r, source, mouth, discharge, length, width, widthFactor, sourceWidth, parent});
|
|
}
|
|
|
|
// draw rivers
|
|
rivers.html(riverPaths.map(d => `<path id="river${d[1]}" d="${d[0]}"/>`).join(""));
|
|
}
|
|
}
|
|
|
|
// depression filling algorithm (for a correct water flux modeling)
|
|
const resolveDepressions = function(h) {
|
|
const {cells, features} = pack;
|
|
const ITERATIONS = 150;
|
|
|
|
const lakes = features.filter(f => f.type === "lake");
|
|
lakes.forEach(l => {
|
|
const uniqueCells = new Set();
|
|
l.vertices.forEach(v => pack.vertices.c[v].forEach(c => cells.h[c] >= 20 && uniqueCells.add(c)));
|
|
l.shoreline = [...uniqueCells];
|
|
});
|
|
|
|
const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells
|
|
land.sort((a,b) => h[b] - h[a]); // highest cells go first
|
|
|
|
let depressions = Infinity;
|
|
for (let l = 0; depressions && l < ITERATIONS; l++) {
|
|
depressions = 0;
|
|
|
|
for (const l of lakes) {
|
|
const minHeight = d3.min(l.shoreline.map(s => h[s]));
|
|
if (minHeight >= 100 || l.height > minHeight) continue;
|
|
l.height = minHeight + 1;
|
|
depressions++;
|
|
}
|
|
|
|
for (const i of land) {
|
|
const minHeight = d3.min(cells.c[i].map(c => cells.t[c] > 0 ? h[c] : pack.features[cells.f[c]].height || h[c]));
|
|
if (minHeight >= 100 || h[i] > minHeight) continue;
|
|
h[i] = minHeight + 1;
|
|
depressions++;
|
|
}
|
|
}
|
|
|
|
depressions && ERROR && console.error("Heightmap is depressed. Issues with rivers expected. Remove depressed areas to resolve");
|
|
}
|
|
|
|
// add more river points on 1/3 and 2/3 of length
|
|
const addMeandering = function(segments, width = 1, meandering = .5) {
|
|
const riverMeandered = []; // to store enhanced segments
|
|
|
|
for (let s = 0; s < segments.length; s++, width++) {
|
|
const sX = segments[s].x, sY = segments[s].y; // segment start coordinates
|
|
const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence
|
|
riverMeandered.push([sX, sY, c]);
|
|
|
|
if (s+1 === segments.length) break; // do not meander last segment
|
|
|
|
const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates
|
|
const angle = Math.atan2(eY - sY, eX - sX);
|
|
const sin = Math.sin(angle), cos = Math.cos(angle);
|
|
|
|
const meander = meandering + 1 / width + Math.random() * Math.max(meandering - width / 100, 0);
|
|
const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2; // square distance between segment start and end
|
|
|
|
if (width < 10 && (dist2 > 64 || (dist2 > 36 && segments.length < 6))) {
|
|
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
|
|
const p1x = (sX * 2 + eX) / 3 + -sin * meander;
|
|
const p1y = (sY * 2 + eY) / 3 + cos * meander;
|
|
const p2x = (sX + eX * 2) / 3 + sin * meander;
|
|
const p2y = (sY + eY * 2) / 3 + cos * meander;
|
|
riverMeandered.push([p1x, p1y], [p2x, p2y]);
|
|
} else if (dist2 > 25 || segments.length < 6) {
|
|
// if dist is medium or river is small add 1 extra middlepoint
|
|
const p1x = (sX + eX) / 2 + -sin * meander;
|
|
const p1y = (sY + eY) / 2 + cos * meander;
|
|
riverMeandered.push([p1x, p1y]);
|
|
}
|
|
|
|
}
|
|
|
|
return riverMeandered;
|
|
}
|
|
|
|
const getPath = function(points, widthFactor = 1, sourceWidth = .1) {
|
|
let offset, extraOffset = sourceWidth; // starting river width (to make river source visible)
|
|
const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length
|
|
const widening = 1000 + riverLength * 30;
|
|
const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon
|
|
const last = points.length - 1;
|
|
const factor = riverLength / points.length;
|
|
|
|
// first point
|
|
let x = points[0][0], y = points[0][1], c;
|
|
let angle = Math.atan2(y - points[1][1], x - points[1][0]);
|
|
let sin = Math.sin(angle), cos = Math.cos(angle);
|
|
let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset;
|
|
riverPointsLeft.push([xLeft, yLeft]);
|
|
let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset;
|
|
riverPointsRight.unshift([xRight, yRight]);
|
|
|
|
// middle points
|
|
for (let p = 1; p < last; p++) {
|
|
x = points[p][0], y = points[p][1], c = points[p][2] || 0;
|
|
const xPrev = points[p-1][0], yPrev = points[p - 1][1];
|
|
const xNext = points[p+1][0], yNext = points[p + 1][1];
|
|
angle = Math.atan2(yPrev - yNext, xPrev - xNext);
|
|
sin = Math.sin(angle), cos = Math.cos(angle);
|
|
offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * widthFactor) + extraOffset;
|
|
const confOffset = Math.atan(c * 5 / widening);
|
|
extraOffset += confOffset;
|
|
xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset);
|
|
riverPointsLeft.push([xLeft, yLeft]);
|
|
xRight = x + sin * offset, yRight = y + -cos * offset;
|
|
riverPointsRight.unshift([xRight, yRight]);
|
|
}
|
|
|
|
// end point
|
|
x = points[last][0], y = points[last][1], c = points[last][2];
|
|
if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence
|
|
angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x);
|
|
sin = Math.sin(angle), cos = Math.cos(angle);
|
|
xLeft = x + -sin * offset, yLeft = y + cos * offset;
|
|
riverPointsLeft.push([xLeft, yLeft]);
|
|
xRight = x + sin * offset, yRight = y + -cos * offset;
|
|
riverPointsRight.unshift([xRight, yRight]);
|
|
|
|
// generate polygon path and return
|
|
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
|
|
const right = lineGen(riverPointsRight);
|
|
let left = lineGen(riverPointsLeft);
|
|
left = left.substring(left.indexOf("C"));
|
|
return [round(right + left, 2), rn(riverLength, 2), offset];
|
|
}
|
|
|
|
const specify = function() {
|
|
const rivers = pack.rivers;
|
|
if (!rivers.length) return;
|
|
Math.random = aleaPRNG(seed);
|
|
const tresholdElement = Math.ceil(rivers.length * .15);
|
|
const smallLength = rivers.map(r => r.length || 0).sort((a, b) => a-b)[tresholdElement];
|
|
const smallType = {"Creek":9, "River":3, "Brook":3, "Stream":1}; // weighted small river types
|
|
|
|
for (const r of rivers) {
|
|
r.basin = getBasin(r.i);
|
|
r.name = getName(r.mouth);
|
|
const small = r.length < smallLength;
|
|
r.type = r.parent && !(r.i%6) ? small ? "Branch" : "Fork" : small ? rw(smallType) : "River";
|
|
}
|
|
}
|
|
|
|
const getName = function(cell) {
|
|
return Names.getCulture(pack.cells.culture[cell]);
|
|
}
|
|
|
|
// remove river and all its tributaries
|
|
const remove = function(id) {
|
|
const cells = pack.cells;
|
|
const riversToRemove = pack.rivers.filter(r => r.i === id || r.parent === id || r.basin === id).map(r => r.i);
|
|
riversToRemove.forEach(r => rivers.select("#river"+r).remove());
|
|
cells.r.forEach((r, i) => {
|
|
if (!r || !riversToRemove.includes(r)) return;
|
|
cells.r[i] = 0;
|
|
cells.fl[i] = grid.cells.prec[cells.g[i]];
|
|
cells.conf[i] = 0;
|
|
});
|
|
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
|
|
}
|
|
|
|
const getBasin = function(r) {
|
|
const parent = pack.rivers.find(river => river.i === r)?.parent;
|
|
if (!parent || r === parent) return r;
|
|
return getBasin(parent);
|
|
}
|
|
|
|
return {generate, resolveDepressions, addMeandering, getPath, specify, getName, getBasin, remove};
|
|
|
|
}))); |