Fantasy-Map-Generator/modules/features.js

259 lines
8.7 KiB
JavaScript

"use strict";
window.Features = (function () {
const DEEPER_LAND = 3;
const LANDLOCKED = 2;
const LAND_COAST = 1;
const UNMARKED = 0;
const WATER_COAST = -1;
const DEEP_WATER = -2;
// calculate distance to coast for every cell
function markup({distanceField, neighbors, start, increment, limit = INT8_MAX}) {
for (let distance = start, marked = Infinity; marked > 0 && distance !== limit; distance += increment) {
marked = 0;
const prevDistance = distance - increment;
for (let cellId = 0; cellId < neighbors.length; cellId++) {
if (distanceField[cellId] !== prevDistance) continue;
for (const neighborId of neighbors[cellId]) {
if (distanceField[neighborId] !== UNMARKED) continue;
distanceField[neighborId] = distance;
marked++;
}
}
}
}
// mark Grid features (ocean, lakes, islands) and calculate distance field
function markupGrid() {
TIME && console.time("markupGrid");
Math.random = aleaPRNG(seed); // get the same result on heightmap edit in Erase mode
const {h: heights, c: neighbors, b: borderCells, i} = grid.cells;
const cellsNumber = i.length;
const distanceField = new Int8Array(cellsNumber); // gird.cells.t
const featureIds = new Uint16Array(cellsNumber); // gird.cells.f
const features = [0];
const queue = [0];
for (let featureId = 1; queue[0] !== -1; featureId++) {
const firstCell = queue[0];
featureIds[firstCell] = featureId;
const land = heights[firstCell] >= 20;
let border = false; // set true if feature touches map edge
while (queue.length) {
const cellId = queue.pop();
if (borderCells[cellId]) border = true;
for (const neighborId of neighbors[cellId]) {
const isNeibLand = heights[neighborId] >= 20;
if (land === isNeibLand && featureIds[neighborId] === UNMARKED) {
featureIds[neighborId] = featureId;
queue.push(neighborId);
} else if (land && !isNeibLand) {
distanceField[cellId] = LAND_COAST;
distanceField[neighborId] = WATER_COAST;
}
}
}
const type = land ? "island" : border ? "ocean" : "lake";
features.push({i: featureId, land, border, type});
queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell
}
// markup deep ocean cells
markup({distanceField, neighbors, start: DEEP_WATER, increment: -1, limit: -10});
grid.cells.t = distanceField;
grid.cells.f = featureIds;
grid.features = features;
TIME && console.timeEnd("markupGrid");
}
// mark Pack features (ocean, lakes, islands), calculate distance field and add properties
function markupPack() {
TIME && console.time("markupPack");
const gridCellsNumber = grid.cells.i.length;
const OCEAN_MIN_SIZE = gridCellsNumber / 25;
const SEA_MIN_SIZE = gridCellsNumber / 1000;
const CONTINENT_MIN_SIZE = gridCellsNumber / 10;
const ISLAND_MIN_SIZE = gridCellsNumber / 1000;
const {h: heights, c: neighbors, b: borderCells, i} = pack.cells;
const cellsNumber = i.length;
if (!cellsNumber) return; // no cells -> there is nothing to do
const distanceField = new Int8Array(cellsNumber); // pack.cells.t
const featureIds = new Uint16Array(cellsNumber); // pack.cells.f
const haven = createTypedArray({maxValue: cellsNumber, length: cellsNumber}); // haven: opposite water cell
const harbor = new Uint8Array(cellsNumber); // harbor: number of adjacent water cells
const features = [0];
const defineHaven = cellId => {
const waterCells = neighbors[cellId].filter(isWater);
const distances = waterCells.map(c => dist2(cells.p[cellId], cells.p[c]));
const closest = distances.indexOf(Math.min.apply(Math, distances));
haven[cellId] = waterCells[closest];
harbor[cellId] = waterCells.length;
};
const queue = [0];
for (let featureId = 1; queue[0] !== -1; featureId++) {
const firstCell = queue[0];
featureIds[firstCell] = featureId;
const land = isLand(firstCell);
let border = false; // true if feature touches map border
let totalCells = 1; // count cells in a feature
while (queue.length) {
const cellId = queue.pop();
if (borderCells[cellId]) border = true;
for (const neighborId of neighbors[cellId]) {
const isNeibLand = isLand(neighborId);
if (land && !isNeibLand) {
distanceField[cellId] = LAND_COAST;
distanceField[neighborId] = WATER_COAST;
if (!haven[cellId]) defineHaven(cellId);
} else if (land && isNeibLand) {
if (distanceField[neighborId] === UNMARKED && distanceField[cellId] === LAND_COAST)
distanceField[neighborId] = LANDLOCKED;
else if (distanceField[cellId] === UNMARKED && distanceField[neighborId] === LAND_COAST)
distanceField[cellId] = LANDLOCKED;
}
if (!featureIds[neighborId] && land === isNeibLand) {
queue.push(neighborId);
featureIds[neighborId] = featureId;
totalCells++;
}
}
}
const featureVertices = getFeatureVertices({firstCell, vertices, cells, featureIds, featureId});
const points = clipPoly(featureVertices.map(vertex => vertices.p[vertex]));
const area = d3.polygonArea(points); // feature perimiter area
features.push(addFeature({firstCell, land, border, featureVertices, featureId, totalCells, area}));
queue[0] = featureIds.findIndex(f => f === UNMARKED); // find unmarked cell
}
markup({distanceField, neighbors, start: DEEPER_LAND, increment: 1}); // markup pack land
markup({distanceField, neighbors, start: DEEP_WATER, increment: -1, limit: -10}); // markup pack water
pack.cells.t = distanceField;
pack.cells.f = featureIds;
pack.cells.haven = haven;
pack.cells.harbor = harbor;
pack.features = features;
TIME && console.timeEnd("markupPack");
function addFeature({firstCell, land, border, featureVertices, featureId, totalCells, area}) {
const absArea = Math.abs(rn(area));
if (land) return addIsland();
if (border) return addOcean();
return addLake();
function addIsland() {
const group = defineIslandGroup();
const feature = {
i: featureId,
type: "island",
group,
land: true,
border,
cells: totalCells,
firstCell,
vertices: featureVertices,
area: absArea
};
return feature;
}
function addOcean() {
const group = defineOceanGroup();
const feature = {
i: featureId,
type: "ocean",
group,
land: false,
border: false,
cells: totalCells,
firstCell,
vertices: featureVertices,
area: absArea
};
return feature;
}
function addLake() {
const group = "freshwater"; // temp, to be defined later
const name = ""; // temp, to be defined later
// ensure lake ring is clockwise (to form a hole)
const lakeVertices = area > 0 ? featureVertices.reverse() : featureVertices;
const shoreline = getShoreline(); // land cells around lake
const height = getLakeElevation();
function getShoreline() {
const isLand = cellId => heights[cellId] >= MIN_LAND_HEIGHT;
const cellsAround = lakeVertices.map(vertex => vertices.c[vertex].filter(isLand)).flat();
return unique(cellsAround);
}
function getLakeElevation() {
const MIN_ELEVATION_DELTA = 0.1;
const minShoreHeight = d3.min(shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT;
return rn(minShoreHeight - MIN_ELEVATION_DELTA, 2);
}
const feature = {
i: featureId,
type: "lake",
group,
name,
land: false,
border: false,
cells: totalCells,
firstCell,
vertices: lakeVertices,
shoreline: shoreline,
height,
area: absArea
};
return feature;
}
function defineOceanGroup() {
if (totalCells > OCEAN_MIN_SIZE) return "ocean";
if (totalCells > SEA_MIN_SIZE) return "sea";
return "gulf";
}
function defineIslandGroup() {
const prevFeature = features[featureIds[firstCell - 1]];
if (prevFeature && prevFeature.type === "lake") return "lake_island";
if (totalCells > CONTINENT_MIN_SIZE) return "continent";
if (totalCells > ISLAND_MIN_SIZE) return "island";
return "isle";
}
}
}
return {markupGrid, markupPack};
})();