mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 01:41:22 +01:00
377 lines
No EOL
15 KiB
JavaScript
377 lines
No EOL
15 KiB
JavaScript
(function (global, factory) {
|
|
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
|
|
typeof define === 'function' && define.amd ? define(factory) :
|
|
(global.Rivers = factory());
|
|
}(this, (function () {'use strict';
|
|
|
|
const generate = function(changeHeights = true) {
|
|
TIME && console.time('generateRivers');
|
|
Math.random = aleaPRNG(seed);
|
|
const cells = pack.cells, p = cells.p, features = pack.features;
|
|
|
|
// build distance field in cells from water (cells.t)
|
|
void function markupLand() {
|
|
const q = t => cells.i.filter(i => cells.t[i] === t);
|
|
for (let t = 2, queue = q(t); queue.length; t++, queue = q(t)) {
|
|
queue.forEach(i => cells.c[i].forEach(c => {
|
|
if (!cells.t[c]) cells.t[c] = t+1;
|
|
}));
|
|
}
|
|
}()
|
|
|
|
// height with added t value to make map less depressed
|
|
const h = Array.from(cells.h)
|
|
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + cells.t[i] / 100)
|
|
.map((h, i) => h < 20 || cells.t[i] < 1 ? h : h + d3.mean(cells.c[i].map(c => cells.t[c])) / 10000);
|
|
|
|
resolveDepressions(h);
|
|
features.forEach(f => {delete f.river; delete f.flux; delete f.inlets});
|
|
|
|
const riversData = []; // rivers data
|
|
cells.fl = new Uint16Array(cells.i.length); // water flux array
|
|
cells.r = new Uint16Array(cells.i.length); // rivers array
|
|
cells.conf = new Uint8Array(cells.i.length); // confluences array
|
|
let riverNext = 1; // first river id is 1, not 0
|
|
|
|
void function drainWater() {
|
|
const land = cells.i.filter(i => h[i] >= 20).sort((a,b) => h[b] - h[a]);
|
|
const outlets = new Uint32Array(features.length);
|
|
// enumerate lake outlet positions
|
|
features.filter(f => f.type === "lake" && (f.group === "freshwater" || f.group === "frozen")).forEach(l => {
|
|
let outlet = 0;
|
|
if (l.shoreline) {
|
|
outlet = l.shoreline[d3.scan(l.shoreline, (a,b) => h[a] - h[b])];
|
|
} else { // in case it got missed or deleted
|
|
WARN && console.warn('Re-scanning shoreline of a lake');
|
|
const shallows = cells.i.filter(j => cells.t[j] === -1 && cells.f[j] === l.i);
|
|
let shoreline = [];
|
|
shallows.map(w => cells.c[w]).forEach(cList => cList.forEach(s => shoreline.push(s)));
|
|
outlet = shoreline[d3.scan(shoreline, (a,b) => h[a] - h[b])];
|
|
}
|
|
outlets[l.i] = outlet;
|
|
delete l.shoreline // cleanup temp data once used
|
|
});
|
|
|
|
const flowDown = function(min, mFlux, iFlux, ri, i = 0){
|
|
if (cells.r[min]) { // downhill cell already has river assigned
|
|
if (mFlux < iFlux) {
|
|
cells.conf[min] = cells.fl[min]; // mark confluence
|
|
if (h[min] >= 20) riversData.find(r => r.river === cells.r[min]).parent = ri; // min river is a tributary of current river
|
|
cells.r[min] = ri; // re-assign river if downhill part has less flux
|
|
} else {
|
|
cells.conf[min] += iFlux; // mark confluence
|
|
if (h[min] >= 20) riversData.find(r => r.river === ri).parent = cells.r[min]; // current river is a tributary of min river
|
|
}
|
|
} else cells.r[min] = ri; // assign the river to the downhill cell
|
|
|
|
if (h[min] < 20) {
|
|
// pour water to the sea haven
|
|
const oh = i ? cells.haven[i] : min;
|
|
riversData.push({river: ri, cell: oh, x: p[min][0], y: p[min][1]});
|
|
const mf = features[cells.f[min]]; // feature of min cell
|
|
if (mf.type === "lake") {
|
|
if (!mf.river || iFlux > mf.flux) {
|
|
mf.river = ri; // pour water to lake
|
|
mf.flux = iFlux; // entering flux
|
|
}
|
|
mf.totalFlux = (mf.totalFlux || 0) + iFlux;
|
|
if (mf.inlets) {
|
|
mf.inlets.push(ri);
|
|
} else {
|
|
mf.inlets = [ri];
|
|
}
|
|
}
|
|
} else {
|
|
cells.fl[min] += iFlux; // propagate flux
|
|
riversData.push({river: ri, cell: min, x: p[min][0], y: p[min][1]}); // add next River segment
|
|
}
|
|
}
|
|
|
|
land.forEach(function(i) {
|
|
cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation
|
|
const x = p[i][0], y = p[i][1];
|
|
|
|
// lake outlets draw from lake
|
|
let n = -1, out2 = 0;
|
|
while (outlets.includes(i, n+1)) {
|
|
n = outlets.indexOf(i, n+1);
|
|
const l = features[n];
|
|
if (!l) continue;
|
|
const j = cells.haven[i];
|
|
// allow chain lakes to retain identity
|
|
if(cells.r[j] !== l.river) {
|
|
let touch = false;
|
|
for (const c of cells.c[j]){
|
|
if (cells.r[c] === l.river) {
|
|
touch = true;
|
|
break;
|
|
}
|
|
}
|
|
if (touch) {
|
|
cells.r[j] = l.river;
|
|
riversData.push({river: l.river, cell: j, x: p[j][0], y: p[j][1]});
|
|
} else {
|
|
cells.r[j] = riverNext;
|
|
riversData.push({river: riverNext, cell: j, x: p[j][0], y: p[j][1]});
|
|
riverNext++;
|
|
}
|
|
}
|
|
cells.fl[j] = l.totalFlux; // signpost river size
|
|
flowDown(i, cells.fl[i], l.totalFlux, cells.r[j]);
|
|
// prevent dropping imediately back into the lake
|
|
out2 = cells.c[i].filter(c => (h[c] >= 20 || cells.f[c] !== cells.f[j])).sort((a,b) => h[a] - h[b])[0]; // downhill cell not in the source lake
|
|
// assign all to outlet basin
|
|
if (l.inlets) l.inlets.forEach(fork => riversData.find(r => r.river === fork).parent = cells.r[j]);
|
|
}
|
|
|
|
// near-border cell: pour out of the screen
|
|
if (cells.b[i]) {
|
|
if (cells.r[i]) {
|
|
const to = [];
|
|
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
|
|
if (min === y) {to[0] = x; to[1] = 0;} else
|
|
if (min === graphHeight - y) {to[0] = x; to[1] = graphHeight;} else
|
|
if (min === x) {to[0] = 0; to[1] = y;} else
|
|
if (min === graphWidth - x) {to[0] = graphWidth; to[1] = y;}
|
|
riversData.push({river: cells.r[i], cell: i, x: to[0], y: to[1]});
|
|
}
|
|
return;
|
|
}
|
|
|
|
const min = out2 || cells.c[i][d3.scan(cells.c[i], (a, b) => h[a] - h[b])]; // downhill cell
|
|
|
|
if (cells.fl[i] < 30) {
|
|
if (h[min] >= 20) cells.fl[min] += cells.fl[i];
|
|
return; // flux is too small to operate as river
|
|
}
|
|
|
|
// Proclaim a new river
|
|
if (!cells.r[i]) {
|
|
cells.r[i] = riverNext;
|
|
riversData.push({river: riverNext, cell: i, x, y});
|
|
riverNext++;
|
|
}
|
|
|
|
flowDown(min, cells.fl[min], cells.fl[i], cells.r[i], i);
|
|
|
|
});
|
|
}()
|
|
|
|
void function defineRivers() {
|
|
pack.rivers = []; // rivers data
|
|
const riverPaths = []; // temporary data for all rivers
|
|
|
|
for (let r = 1; r <= riverNext; r++) {
|
|
const riverSegments = riversData.filter(d => d.river === r);
|
|
|
|
if (riverSegments.length > 2) {
|
|
const source = riverSegments[0], mouth = riverSegments[riverSegments.length-2];
|
|
const riverEnhanced = addMeandring(riverSegments);
|
|
let width = rn(.8 + Math.random() * .4, 1); // river width modifier [.2, 10]
|
|
let increment = rn(.8 + Math.random() * .6, 1); // river bed widening modifier [.01, 3]
|
|
const [path, length] = getPath(riverEnhanced, width, increment, cells.h[source.cell] >= 20 ? .1 : .6);
|
|
riverPaths.push([r, path, width, increment]);
|
|
const parent = source.parent || 0;
|
|
pack.rivers.push({i:r, parent, length, source:source.cell, mouth:mouth.cell});
|
|
} else {
|
|
// remove too short rivers
|
|
riverSegments.filter(s => cells.r[s.cell] === r).forEach(s => cells.r[s.cell] = 0);
|
|
}
|
|
}
|
|
|
|
// drawRivers
|
|
rivers.selectAll("path").remove();
|
|
rivers.selectAll("path").data(riverPaths).enter()
|
|
.append("path").attr("d", d => d[1]).attr("id", d => "river"+d[0])
|
|
.attr("data-width", d => d[2]).attr("data-increment", d => d[3]);
|
|
}()
|
|
|
|
// apply change heights as basic one
|
|
if (changeHeights) cells.h = Uint8Array.from(h);
|
|
|
|
TIME && console.timeEnd('generateRivers');
|
|
}
|
|
|
|
// depression filling algorithm (for a correct water flux modeling)
|
|
const resolveDepressions = function(h) {
|
|
const cells = pack.cells;
|
|
const land = cells.i.filter(i => h[i] >= 20 && h[i] < 100 && !cells.b[i]); // exclude near-border cells
|
|
const lakes = pack.features.filter(f => f.type === "lake" && (f.group === "freshwater" || f.group === "frozen")); // to keep lakes flat
|
|
lakes.forEach(l => {
|
|
l.shoreline = [];
|
|
l.height = 21;
|
|
l.totalFlux = grid.cells.prec[cells.g[l.firstCell]];
|
|
});
|
|
for (let i of land.filter(i => cells.t[i] === 1)) { // select shoreline cells
|
|
cells.c[i].map(c => pack.features[cells.f[c]]).forEach(cf => {
|
|
if (lakes.includes(cf) && !cf.shoreline.includes(i)) {
|
|
cf.shoreline.push(i);
|
|
}
|
|
})
|
|
}
|
|
land.sort((a,b) => h[b] - h[a]); // highest cells go first
|
|
let depressed = false;
|
|
|
|
for (let l = 0, depression = Infinity; depression && l < 100; l++) {
|
|
depression = 0;
|
|
for (const l of lakes) {
|
|
const minHeight = d3.min(l.shoreline.map(s => h[s]));
|
|
if (minHeight === 100) continue; // already max height
|
|
if (l.height <= minHeight) {
|
|
l.height = Math.min(rn(minHeight + 1), 100);
|
|
depression++;
|
|
depressed = true;
|
|
}
|
|
}
|
|
for (const i of land) {
|
|
const minHeight = d3.min(cells.c[i].map(c => cells.t[c] > 0 ? h[c] :
|
|
pack.features[cells.f[c]].height || h[c] // NB undefined is falsy (a || b is short for a ? a : b)
|
|
));
|
|
if (minHeight === 100) continue; // already max height
|
|
if (h[i] <= minHeight) {
|
|
h[i] = Math.min(minHeight + 1, 100);
|
|
depression++;
|
|
depressed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return depressed;
|
|
}
|
|
|
|
// add more river points on 1/3 and 2/3 of length
|
|
const addMeandring = function(segments, rndFactor = 0.3) {
|
|
const riverEnhanced = []; // to store enhanced segments
|
|
let side = 1; // to control meandring direction
|
|
|
|
for (let s = 0; s < segments.length; s++) {
|
|
const sX = segments[s].x, sY = segments[s].y; // segment start coordinates
|
|
const c = pack.cells.conf[segments[s].cell] || 0; // if segment is river confluence
|
|
riverEnhanced.push([sX, sY, c]);
|
|
|
|
if (s+1 === segments.length) break; // do not enhance last segment
|
|
|
|
const eX = segments[s+1].x, eY = segments[s+1].y; // segment end coordinates
|
|
const angle = Math.atan2(eY - sY, eX - sX);
|
|
const sin = Math.sin(angle), cos = Math.cos(angle);
|
|
const serpentine = 1 / (s + 1) + 0.3;
|
|
const meandr = serpentine + Math.random() * rndFactor;
|
|
if (P(.5)) side *= -1; // change meandring direction in 50%
|
|
const dist2 = (eX - sX) ** 2 + (eY - sY) ** 2;
|
|
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
|
|
if (dist2 > 64 || (dist2 > 16 && segments.length < 6)) {
|
|
const p1x = (sX * 2 + eX) / 3 + side * -sin * meandr;
|
|
const p1y = (sY * 2 + eY) / 3 + side * cos * meandr;
|
|
if (P(.2)) side *= -1; // change 2nd extra point meandring direction in 20%
|
|
const p2x = (sX + eX * 2) / 3 + side * sin * meandr;
|
|
const p2y = (sY + eY * 2) / 3 + side * cos * meandr;
|
|
riverEnhanced.push([p1x, p1y], [p2x, p2y]);
|
|
// if dist is medium or river is small add 1 extra middlepoint
|
|
} else if (dist2 > 16 || segments.length < 6) {
|
|
const p1x = (sX + eX) / 2 + side * -sin * meandr;
|
|
const p1y = (sY + eY) / 2 + side * cos * meandr;
|
|
riverEnhanced.push([p1x, p1y]);
|
|
}
|
|
|
|
}
|
|
return riverEnhanced;
|
|
}
|
|
|
|
const getPath = function(points, width = 1, increment = 1, starting = .1) {
|
|
let offset, extraOffset = starting; // starting river width (to make river source visible)
|
|
const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i-1][0], v[1] - p[i-1][1]) : 0), 0); // summ of segments length
|
|
const widening = rn((1000 + (riverLength * 30)) * increment);
|
|
const riverPointsLeft = [], riverPointsRight = []; // store points on both sides to build a valid polygon
|
|
const last = points.length - 1;
|
|
const factor = riverLength / points.length;
|
|
|
|
// first point
|
|
let x = points[0][0], y = points[0][1], c;
|
|
let angle = Math.atan2(y - points[1][1], x - points[1][0]);
|
|
let sin = Math.sin(angle), cos = Math.cos(angle);
|
|
let xLeft = x + -sin * extraOffset, yLeft = y + cos * extraOffset;
|
|
riverPointsLeft.push([xLeft, yLeft]);
|
|
let xRight = x + sin * extraOffset, yRight = y + -cos * extraOffset;
|
|
riverPointsRight.unshift([xRight, yRight]);
|
|
|
|
// middle points
|
|
for (let p = 1; p < last; p++) {
|
|
x = points[p][0], y = points[p][1], c = points[p][2] || 0;
|
|
const xPrev = points[p-1][0], yPrev = points[p - 1][1];
|
|
const xNext = points[p+1][0], yNext = points[p + 1][1];
|
|
angle = Math.atan2(yPrev - yNext, xPrev - xNext);
|
|
sin = Math.sin(angle), cos = Math.cos(angle);
|
|
offset = (Math.atan(Math.pow(p * factor, 2) / widening) / 2 * width) + extraOffset;
|
|
const confOffset = Math.atan(c * 5 / widening);
|
|
extraOffset += confOffset;
|
|
xLeft = x + -sin * offset, yLeft = y + cos * (offset + confOffset);
|
|
riverPointsLeft.push([xLeft, yLeft]);
|
|
xRight = x + sin * offset, yRight = y + -cos * offset;
|
|
riverPointsRight.unshift([xRight, yRight]);
|
|
}
|
|
|
|
// end point
|
|
x = points[last][0], y = points[last][1], c = points[last][2];
|
|
if (c) extraOffset += Math.atan(c * 10 / widening); // add extra width on river confluence
|
|
angle = Math.atan2(points[last-1][1] - y, points[last-1][0] - x);
|
|
sin = Math.sin(angle), cos = Math.cos(angle);
|
|
xLeft = x + -sin * offset, yLeft = y + cos * offset;
|
|
riverPointsLeft.push([xLeft, yLeft]);
|
|
xRight = x + sin * offset, yRight = y + -cos * offset;
|
|
riverPointsRight.unshift([xRight, yRight]);
|
|
|
|
// generate polygon path and return
|
|
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
|
|
const right = lineGen(riverPointsRight);
|
|
let left = lineGen(riverPointsLeft);
|
|
left = left.substring(left.indexOf("C"));
|
|
return [round(right + left, 2), rn(riverLength, 2)];
|
|
}
|
|
|
|
const specify = function() {
|
|
const rivers = pack.rivers;
|
|
if (!rivers.length) return;
|
|
Math.random = aleaPRNG(seed);
|
|
const tresholdElement = Math.ceil(rivers.length * .15);
|
|
const smallLength = rivers.map(r => r.length || 0).sort((a, b) => a-b)[tresholdElement];
|
|
const smallType = {"Creek":9, "River":3, "Brook":3, "Stream":1}; // weighted small river types
|
|
|
|
for (const r of rivers) {
|
|
r.basin = getBasin(r.i, r.parent);
|
|
r.name = getName(r.mouth);
|
|
const small = r.length < smallLength;
|
|
r.type = r.parent && !(r.i%6) ? small ? "Branch" : "Fork" : small ? rw(smallType) : "River";
|
|
}
|
|
}
|
|
|
|
const getName = function(cell) {
|
|
return Names.getCulture(pack.cells.culture[cell]);
|
|
}
|
|
|
|
// remove river and all its tributaries
|
|
const remove = function(id) {
|
|
const cells = pack.cells;
|
|
const riversToRemove = pack.rivers.filter(r => r.i === id || getBasin(r.i, r.parent, id) === id).map(r => r.i);
|
|
riversToRemove.forEach(r => rivers.select("#river"+r).remove());
|
|
cells.r.forEach((r, i) => {
|
|
if (!r || !riversToRemove.includes(r)) return;
|
|
cells.r[i] = 0;
|
|
cells.fl[i] = grid.cells.prec[cells.g[i]];
|
|
cells.conf[i] = 0;
|
|
});
|
|
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
|
|
}
|
|
|
|
const getBasin = function(r, p, e) {
|
|
while (p && r !== p && r !== e) {
|
|
const parent = pack.rivers.find(r => r.i === p);
|
|
if (!parent) return r;
|
|
r = parent.i;
|
|
p = parent.parent;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
return {generate, resolveDepressions, addMeandring, getPath, specify, getName, getBasin, remove};
|
|
|
|
}))); |