mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 09:41:24 +01:00
381 lines
14 KiB
JavaScript
381 lines
14 KiB
JavaScript
(function (global, factory) {
|
|
typeof exports === "object" && typeof module !== "undefined" ? (module.exports = factory()) : typeof define === "function" && define.amd ? define(factory) : (global.Rivers = factory());
|
|
})(this, function () {
|
|
"use strict";
|
|
|
|
const generate = function (allowErosion = true) {
|
|
TIME && console.time("generateRivers");
|
|
Math.random = aleaPRNG(seed);
|
|
const {cells, features} = pack;
|
|
const p = cells.p;
|
|
|
|
const riversData = []; // rivers data
|
|
cells.fl = new Uint16Array(cells.i.length); // water flux array
|
|
cells.r = new Uint16Array(cells.i.length); // rivers array
|
|
cells.conf = new Uint8Array(cells.i.length); // confluences array
|
|
let riverNext = 1; // first river id is 1
|
|
|
|
const h = alterHeights();
|
|
Lakes.prepareLakeData(h);
|
|
resolveDepressions(h);
|
|
drainWater();
|
|
defineRivers();
|
|
Lakes.cleanupLakeData();
|
|
|
|
if (allowErosion) cells.h = Uint8Array.from(h); // apply changed heights as basic one
|
|
|
|
TIME && console.timeEnd("generateRivers");
|
|
|
|
function drainWater() {
|
|
const MIN_FLUX_TO_FORM_RIVER = 30;
|
|
const land = cells.i.filter(i => h[i] >= 20).sort((a, b) => h[b] - h[a]);
|
|
const lakeOutCells = Lakes.setClimateData(h);
|
|
|
|
land.forEach(function (i) {
|
|
cells.fl[i] += grid.cells.prec[cells.g[i]]; // flux from precipitation
|
|
const [x, y] = p[i];
|
|
|
|
// create lake outlet if lake is not in deep depression and flux > evaporation
|
|
const lakes = lakeOutCells[i] ? features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation) : [];
|
|
for (const lake of lakes) {
|
|
const lakeCell = cells.c[i].find(c => h[c] < 20 && cells.f[c] === lake.i);
|
|
|
|
cells.fl[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
|
|
|
|
// allow chain lakes to retain identity
|
|
if (cells.r[lakeCell] !== lake.river) {
|
|
const sameRiver = cells.c[lakeCell].some(c => cells.r[c] === lake.river);
|
|
const [x, y] = p[lakeCell];
|
|
const flux = cells.fl[lakeCell];
|
|
|
|
if (sameRiver) {
|
|
cells.r[lakeCell] = lake.river;
|
|
riversData.push({river: lake.river, cell: lakeCell, x, y, flux});
|
|
} else {
|
|
cells.r[lakeCell] = riverNext;
|
|
riversData.push({river: riverNext, cell: lakeCell, x, y, flux});
|
|
riverNext++;
|
|
}
|
|
}
|
|
|
|
lake.outlet = cells.r[lakeCell];
|
|
flowDown(i, cells.fl[i], cells.fl[lakeCell], lake.outlet);
|
|
}
|
|
|
|
// assign all tributary rivers to outlet basin
|
|
for (let outlet = lakes[0]?.outlet, l = 0; l < lakes.length; l++) {
|
|
lakes[l].inlets?.forEach(fork => (riversData.find(r => r.river === fork).parent = outlet));
|
|
}
|
|
|
|
// near-border cell: pour water out of the screen
|
|
if (cells.b[i] && cells.r[i]) {
|
|
const [x, y] = getBorderPoint(i);
|
|
riversData.push({river: cells.r[i], cell: -1, x, y, flux: cells.fl[i]});
|
|
return;
|
|
}
|
|
|
|
// downhill cell (make sure it's not in the source lake)
|
|
let min = null;
|
|
if (lakeOutCells[i]) {
|
|
const filtered = cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c]));
|
|
min = filtered.sort((a, b) => h[a] - h[b])[0];
|
|
} else if (cells.haven[i]) {
|
|
min = cells.haven[i];
|
|
} else {
|
|
min = cells.c[i].sort((a, b) => h[a] - h[b])[0];
|
|
}
|
|
|
|
// cells is depressed
|
|
if (h[i] <= h[min]) return;
|
|
|
|
if (cells.fl[i] < MIN_FLUX_TO_FORM_RIVER) {
|
|
if (h[min] >= 20) cells.fl[min] += cells.fl[i];
|
|
return; // flux is too small to operate as river
|
|
}
|
|
|
|
// proclaim a new river
|
|
if (!cells.r[i]) {
|
|
cells.r[i] = riverNext;
|
|
riversData.push({river: riverNext, cell: i, x, y, flux: cells.fl[i]});
|
|
riverNext++;
|
|
}
|
|
|
|
flowDown(min, cells.fl[min], cells.fl[i], cells.r[i], i);
|
|
});
|
|
}
|
|
|
|
function flowDown(toCell, toFlux, fromFlux, river, fromCell = 0) {
|
|
if (cells.r[toCell]) {
|
|
// downhill cell already has river assigned
|
|
if (toFlux < fromFlux) {
|
|
cells.conf[toCell] = cells.fl[toCell]; // mark confluence
|
|
if (h[toCell] >= 20) riversData.find(r => r.river === cells.r[toCell]).parent = river; // min river is a tributary of current river
|
|
cells.r[toCell] = river; // re-assign river if downhill part has less flux
|
|
} else {
|
|
cells.conf[toCell] += fromFlux; // mark confluence
|
|
if (h[toCell] >= 20) riversData.find(r => r.river === river).parent = cells.r[toCell]; // current river is a tributary of min river
|
|
}
|
|
} else cells.r[toCell] = river; // assign the river to the downhill cell
|
|
|
|
if (h[toCell] < 20) {
|
|
// pour water to the water body
|
|
const waterBody = features[cells.f[toCell]];
|
|
if (waterBody.type === "lake") {
|
|
if (!waterBody.river || fromFlux > waterBody.enteringFlux) {
|
|
waterBody.river = river;
|
|
waterBody.enteringFlux = fromFlux;
|
|
}
|
|
waterBody.flux = waterBody.flux + fromFlux;
|
|
waterBody.inlets ? waterBody.inlets.push(river) : (waterBody.inlets = [river]);
|
|
}
|
|
} else {
|
|
// propagate flux and add next river segment
|
|
cells.fl[toCell] += fromFlux;
|
|
}
|
|
|
|
const [x, y] = p[toCell];
|
|
riversData.push({river, cell: toCell, x, y, flux: fromFlux});
|
|
}
|
|
|
|
function defineRivers() {
|
|
cells.r = new Uint16Array(cells.i.length); // re-initiate rivers array
|
|
pack.rivers = []; // rivers data
|
|
const riverPaths = [];
|
|
|
|
for (let r = 1; r <= riverNext; r++) {
|
|
const riverPoints = riversData.filter(d => d.river === r);
|
|
if (riverPoints.length < 3) continue;
|
|
|
|
for (const segment of riverPoints) {
|
|
const i = segment.cell;
|
|
if (cells.r[i]) continue;
|
|
if (cells.h[i] < 20) continue;
|
|
cells.r[i] = r;
|
|
}
|
|
|
|
const source = riverPoints[0].cell;
|
|
const mouth = riverPoints[riverPoints.length - 2].cell;
|
|
|
|
const widthFactor = rn(0.8 + Math.random() * 0.4, 1); // river width modifier [.8, 1.2]
|
|
const sourceWidth = cells.h[source] >= 20 ? 0.1 : rn(Math.min(Math.max((cells.fl[source] / 500) ** 0.4, 0.5), 1.7), 2);
|
|
|
|
const riverCells = riverPoints.map(point => point.cell);
|
|
const riverMeandered = addMeandering(riverCells, sourceWidth * 10, 0.5);
|
|
const [path, length, offset] = getPath(riverMeandered, widthFactor, sourceWidth);
|
|
riverPaths.push([path, r]);
|
|
|
|
const parent = riverPoints[0].parent || 0;
|
|
const width = rn(offset ** 2, 2); // mounth width in km
|
|
const discharge = last(riverPoints).flux; // in m3/s
|
|
|
|
pack.rivers.push({i: r, source, mouth, discharge, length, width, widthFactor, sourceWidth, parent, cells: riverCells});
|
|
}
|
|
|
|
// draw rivers
|
|
rivers.html(riverPaths.map(d => `<path id="river${d[1]}" d="${d[0]}"/>`).join(""));
|
|
}
|
|
};
|
|
|
|
// add distance to water value to land cells to make map less depressed
|
|
const alterHeights = () => {
|
|
const {h, c, t} = pack.cells;
|
|
return Array.from(h).map((h, i) => {
|
|
if (h < 20 || t[i] < 1) return h;
|
|
return h + t[i] / 100 + d3.mean(c[i].map(c => t[c])) / 10000;
|
|
});
|
|
};
|
|
|
|
// depression filling algorithm (for a correct water flux modeling)
|
|
const resolveDepressions = function (h) {
|
|
const {cells, features} = pack;
|
|
const maxIterations = +document.getElementById("resolveDepressionsStepsOutput").value;
|
|
const checkLakeMaxIteration = maxIterations * 0.85;
|
|
const elevateLakeMaxIteration = maxIterations * 0.75;
|
|
|
|
const height = i => features[cells.f[i]].height || h[i]; // height of lake or specific cell
|
|
|
|
const lakes = features.filter(f => f.type === "lake");
|
|
const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells
|
|
land.sort((a, b) => h[a] - h[b]); // lowest cells go first
|
|
|
|
const progress = [];
|
|
let depressions = Infinity;
|
|
let prevDepressions = null;
|
|
for (let iteration = 0; depressions && iteration < maxIterations; iteration++) {
|
|
if (progress.length > 5 && d3.sum(progress) > 0) {
|
|
// bad progress, abort and set heights back
|
|
h = alterHeights();
|
|
depressions = progress[0];
|
|
break;
|
|
}
|
|
|
|
depressions = 0;
|
|
|
|
if (iteration < checkLakeMaxIteration) {
|
|
for (const l of lakes) {
|
|
if (l.closed) continue;
|
|
const minHeight = d3.min(l.shoreline.map(s => h[s]));
|
|
if (minHeight >= 100 || l.height > minHeight) continue;
|
|
|
|
if (iteration > elevateLakeMaxIteration) {
|
|
l.shoreline.forEach(i => (h[i] = cells.h[i]));
|
|
l.height = d3.min(l.shoreline.map(s => h[s])) - 1;
|
|
l.closed = true;
|
|
continue;
|
|
}
|
|
|
|
depressions++;
|
|
l.height = minHeight + 0.2;
|
|
}
|
|
}
|
|
|
|
for (const i of land) {
|
|
const minHeight = d3.min(cells.c[i].map(c => height(c)));
|
|
if (minHeight >= 100 || h[i] > minHeight) continue;
|
|
|
|
depressions++;
|
|
h[i] = minHeight + 0.1;
|
|
}
|
|
|
|
prevDepressions !== null && progress.push(depressions - prevDepressions);
|
|
prevDepressions = depressions;
|
|
}
|
|
|
|
depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`);
|
|
};
|
|
|
|
// add points at 1/3 and 2/3 of a line between adjacents river cells
|
|
const addMeandering = function (riverCells, width = 1, meandering = 0.5) {
|
|
const meandered = [];
|
|
const {p, conf} = pack.cells;
|
|
const lastCell = riverCells.length - 1;
|
|
|
|
for (let i = 0; i <= lastCell; i++, width++) {
|
|
const cell = riverCells[i];
|
|
const [x1, y1] = p[cell];
|
|
meandered.push([x1, y1, conf[cell]]);
|
|
|
|
if (i === lastCell) break;
|
|
|
|
const nextCell = riverCells[i + 1];
|
|
if (nextCell === -1) {
|
|
meandered.push(getBorderPoint(cell));
|
|
break;
|
|
}
|
|
|
|
const [x2, y2] = p[nextCell];
|
|
const angle = Math.atan2(y2 - y1, x2 - x1);
|
|
const sin = Math.sin(angle);
|
|
const cos = Math.cos(angle);
|
|
|
|
const meander = meandering + 1 / width + Math.random() * Math.max(meandering - width / 100, 0);
|
|
const dist2 = (x2 - x1) ** 2 + (y2 - y1) ** 2; // square distance between cells
|
|
|
|
if (width < 10 && (dist2 > 64 || (dist2 > 36 && riverCells.length < 5))) {
|
|
// if dist2 is big or river is small add extra points at 1/3 and 2/3 of segment
|
|
const p1x = (x1 * 2 + x2) / 3 + -sin * meander;
|
|
const p1y = (y1 * 2 + y2) / 3 + cos * meander;
|
|
const p2x = (x1 + x2 * 2) / 3 + sin * meander;
|
|
const p2y = (y1 + y2 * 2) / 3 + cos * meander;
|
|
meandered.push([p1x, p1y], [p2x, p2y]);
|
|
} else if (dist2 > 25 || riverCells.length < 6) {
|
|
// if dist is medium or river is small add 1 extra middlepoint
|
|
const p1x = (x1 + x2) / 2 + -sin * meander;
|
|
const p1y = (y1 + y2) / 2 + cos * meander;
|
|
meandered.push([p1x, p1y]);
|
|
}
|
|
}
|
|
|
|
return meandered;
|
|
};
|
|
|
|
const getPath = function (points, widthFactor = 1, width = 0.1) {
|
|
const riverLength = points.reduce((s, v, i, p) => s + (i ? Math.hypot(v[0] - p[i - 1][0], v[1] - p[i - 1][1]) : 0), 0); // sum of segments length
|
|
const widening = 1000 + riverLength * 30;
|
|
const factor = riverLength / points.length;
|
|
let offset;
|
|
|
|
// store points on both sides to build a valid polygon
|
|
const riverPointsLeft = [];
|
|
const riverPointsRight = [];
|
|
|
|
for (let p = 0; p < points.length; p++) {
|
|
const [x0, y0] = points[p - 1] || points[p];
|
|
const [x1, y1] = points[p];
|
|
const [x2, y2] = points[p + 1] || points[p];
|
|
|
|
offset = width + (Math.atan(Math.pow(p * factor, 2) / widening) / 2) * widthFactor;
|
|
|
|
if (points[p + 2] && points[p + 1][2]) {
|
|
const confluence = points[p + 1][2];
|
|
width += Math.atan((confluence * 5) / widening);
|
|
}
|
|
|
|
const angle = Math.atan2(y0 - y2, x0 - x2);
|
|
const sinOffset = Math.sin(angle) * offset;
|
|
const cosOffset = Math.cos(angle) * offset;
|
|
|
|
riverPointsLeft.push([x1 - sinOffset, y1 + cosOffset]);
|
|
riverPointsRight.unshift([x1 + sinOffset, y1 - cosOffset]);
|
|
}
|
|
|
|
// generate polygon path and return
|
|
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
|
|
const right = lineGen(riverPointsRight);
|
|
let left = lineGen(riverPointsLeft);
|
|
left = left.substring(left.indexOf("C"));
|
|
|
|
return [round(right + left, 2), rn(riverLength, 2), offset];
|
|
};
|
|
|
|
const specify = function () {
|
|
const rivers = pack.rivers;
|
|
if (!rivers.length) return;
|
|
Math.random = aleaPRNG(seed);
|
|
const thresholdElement = Math.ceil(rivers.length * 0.15);
|
|
const smallLength = rivers.map(r => r.length || 0).sort((a, b) => a - b)[thresholdElement];
|
|
const smallType = {Creek: 9, River: 3, Brook: 3, Stream: 1}; // weighted small river types
|
|
|
|
for (const r of rivers) {
|
|
r.basin = getBasin(r.i);
|
|
r.name = getName(r.mouth);
|
|
const small = r.length < smallLength;
|
|
r.type = r.parent && !(r.i % 6) ? (small ? "Branch" : "Fork") : small ? rw(smallType) : "River";
|
|
}
|
|
};
|
|
|
|
const getName = function (cell) {
|
|
return Names.getCulture(pack.cells.culture[cell]);
|
|
};
|
|
|
|
// remove river and all its tributaries
|
|
const remove = function (id) {
|
|
const cells = pack.cells;
|
|
const riversToRemove = pack.rivers.filter(r => r.i === id || r.parent === id || r.basin === id).map(r => r.i);
|
|
riversToRemove.forEach(r => rivers.select("#river" + r).remove());
|
|
cells.r.forEach((r, i) => {
|
|
if (!r || !riversToRemove.includes(r)) return;
|
|
cells.r[i] = 0;
|
|
cells.fl[i] = grid.cells.prec[cells.g[i]];
|
|
cells.conf[i] = 0;
|
|
});
|
|
pack.rivers = pack.rivers.filter(r => !riversToRemove.includes(r.i));
|
|
};
|
|
|
|
const getBasin = function (r) {
|
|
const parent = pack.rivers.find(river => river.i === r)?.parent;
|
|
if (!parent || r === parent) return r;
|
|
return getBasin(parent);
|
|
};
|
|
|
|
const getBorderPoint = i => {
|
|
const [x, y] = pack.cells.p[i];
|
|
const min = Math.min(y, graphHeight - y, x, graphWidth - x);
|
|
if (min === y) return [x, 0];
|
|
else if (min === graphHeight - y) return [x, graphHeight];
|
|
else if (min === x) return [0, y];
|
|
return [graphWidth, y];
|
|
};
|
|
|
|
return {generate, alterHeights, resolveDepressions, addMeandering, getPath, specify, getName, getBasin, remove};
|
|
});
|