Fantasy-Map-Generator/modules/submap.js

415 lines
14 KiB
JavaScript

"use strict";
/*
Cell resampler module used by submapper and resampler (transform)
main function: resample(options);
*/
window.Submap = (function () {
const isWater = (map, id) => (map.grid.cells.h[map.pack.cells.g[id]] < 20 ? true : false);
const inMap = (x, y) => x > 0 && x < graphWidth && y > 0 && y < graphHeight;
function resample(parentMap, options) {
/*
generate new map based on an existing one (resampling parentMap)
parentMap: {seed, grid, pack} from original map
options = {
projection: f(Number,Number)->[Number, Number]
function to calculate new coordinates
inverse: g(Number,Number)->[Number, Number]
inverse of f
depressRivers: Bool carve out riverbeds?
smoothHeightMap: Bool run smooth filter on heights
addLakesInDepressions: call FMG original funtion on heightmap
lockMarkers: Bool Auto lock all copied markers
lockBurgs: Bool Auto lock all copied burgs
}
*/
const projection = options.projection;
const inverse = options.inverse;
const stage = s => INFO && console.log("SUBMAP:", s);
const timeStart = performance.now();
const childMap = {grid, pack};
invokeActiveZooming();
// copy seed
seed = parentMap.seed;
Math.random = aleaPRNG(seed);
INFO && console.group("SubMap with seed: " + seed);
DEBUG && console.log("Using Options:", options);
// create new grid
applyMapSize();
grid = generateGrid();
drawScaleBar(scale);
const resampler = (points, qtree, f) => {
for (const [i, [x, y]] of points.entries()) {
const [tx, ty] = inverse(x, y);
const oldid = qtree.find(tx, ty, Infinity)[2];
f(i, oldid);
}
};
stage("Resampling heightmap, temperature and precipitation.");
// resample heightmap from old WorldState
const n = grid.points.length;
grid.cells.h = new Uint8Array(n); // heightmap
grid.cells.temp = new Int8Array(n); // temperature
grid.cells.prec = new Uint8Array(n); // precipitation
const reverseGridMap = new Uint32Array(n); // cellmap from new -> oldcell
const oldGrid = parentMap.grid;
// build cache old -> [newcelllist]
const forwardGridMap = parentMap.grid.points.map(_ => []);
resampler(grid.points, parentMap.pack.cells.q, (id, oldid) => {
const cid = parentMap.pack.cells.g[oldid];
grid.cells.h[id] = oldGrid.cells.h[cid];
grid.cells.temp[id] = oldGrid.cells.temp[cid];
grid.cells.prec[id] = oldGrid.cells.prec[cid];
if (options.depressRivers) forwardGridMap[cid].push(id);
reverseGridMap[id] = cid;
});
// TODO: add smooth/noise function for h, temp, prec n times
// smooth heightmap
// smoothing should never change cell type (land->water or water->land)
if (options.smoothHeightMap) {
const gcells = grid.cells;
gcells.h.forEach((h, i) => {
const hs = gcells.c[i].map(c => gcells.h[c]);
hs.push(h);
gcells.h[i] = h >= 20 ? Math.max(d3.mean(hs), 20) : Math.min(d3.mean(hs), 19);
});
}
if (options.depressRivers) {
stage("Generating riverbeds.");
const rbeds = new Uint16Array(grid.cells.i.length);
// and erode riverbeds
parentMap.pack.rivers.forEach(r =>
r.cells.forEach(oldpc => {
if (oldpc < 0) return; // ignore out-of-map marker (-1)
const oldc = parentMap.pack.cells.g[oldpc];
const targetCells = forwardGridMap[oldc];
if (!targetCells) throw "TargetCell shouldn't be empty.";
targetCells.forEach(c => {
if (grid.cells.h[c] < 20) return;
rbeds[c] = 1;
});
})
);
// raise every land cell a bit except riverbeds
grid.cells.h.forEach((h, i) => {
if (rbeds[i] || h < 20) return;
grid.cells.h[i] = Math.min(h + 2, 100);
});
}
stage("Detect features, ocean and generating lakes.");
markFeatures();
markupGridOcean();
// Warning: addLakesInDeepDepressions can be very slow!
if (options.addLakesInDepressions) {
addLakesInDeepDepressions();
openNearSeaLakes();
}
OceanLayers();
calculateMapCoordinates();
// calculateTemperatures();
// generatePrecipitation();
stage("Cell cleanup.");
reGraph();
// remove misclassified cells
stage("Define coastline.");
drawCoastline();
/****************************************************/
/* Packed Graph */
/****************************************************/
const oldCells = parentMap.pack.cells;
// const reverseMap = new Map(); // cellmap from new -> oldcell
const forwardMap = parentMap.pack.cells.p.map(_ => []); // old -> [newcelllist]
const pn = pack.cells.i.length;
const cells = pack.cells;
cells.culture = new Uint16Array(pn);
cells.state = new Uint16Array(pn);
cells.burg = new Uint16Array(pn);
cells.religion = new Uint16Array(pn);
cells.road = new Uint16Array(pn);
cells.crossroad = new Uint16Array(pn);
cells.province = new Uint16Array(pn);
stage("Resampling culture, state and religion map.");
for (const [id, gridCellId] of cells.g.entries()) {
const oldGridId = reverseGridMap[gridCellId];
if (oldGridId === undefined) {
console.error("Can not find old cell id", reverseGridMap, "in", gridCellId);
continue;
}
// find old parent's children
const oldChildren = oldCells.i.filter(oid => oldCells.g[oid] == oldGridId);
let oldid; // matching cell on the original map
if (!oldChildren.length) {
// it *must* be a (deleted) deep ocean cell
if (!oldGrid.cells.h[oldGridId] < 20) {
console.error(`Warning, ${gridCellId} should be water cell, not ${oldGrid.cells.h[oldGridId]}`);
continue;
}
// find replacement: closest water cell
const [ox, oy] = cells.p[id];
const [tx, ty] = inverse(x, y);
oldid = oldCells.q.find(tx, ty, Infinity)[2];
if (!oldid) {
console.warn("Warning, no id found in quad", id, "parent", gridCellId);
continue;
}
} else {
// find closest children (packcell) on the parent map
const distance = x => (x[0] - cells.p[id][0]) ** 2 + (x[1] - cells.p[id][1]) ** 2;
let d = Infinity;
oldChildren.forEach(oid => {
// this should be always true, unless some algo modded the height!
if (isWater(parentMap, oid) !== isWater(childMap, id)) {
console.warn(`cell sank because of addLakesInDepressions: ${oid}`);
return;
}
const [oldpx, oldpy] = oldCells.p[oid];
const nd = distance(projection(oldpx, oldpy));
if (isNaN(nd)) {
console.error("Distance is not a number!", "Old point:", oldpx, oldpy);
}
if (nd < d) [d, oldid] = [nd, oid];
});
if (oldid === undefined) {
console.warn("Warning, no match for", id, "(parent:", gridCellId, ")");
continue;
}
}
if (isWater(childMap, id) !== isWater(parentMap, oldid)) {
WARN && console.warn("Type discrepancy detected:", id, oldid, `${pack.cells.t[id]} != ${oldCells.t[oldid]}`);
}
cells.culture[id] = oldCells.culture[oldid];
cells.state[id] = oldCells.state[oldid];
cells.religion[id] = oldCells.religion[oldid];
cells.province[id] = oldCells.province[oldid];
// reverseMap.set(id, oldid)
forwardMap[oldid].push(id);
}
stage("Regenerating river network.");
Rivers.generate();
drawRivers();
Lakes.defineGroup();
// biome calculation based on (resampled) grid.cells.temp and prec
// it's safe to recalculate.
stage("Regenerating Biome.");
defineBiomes();
// recalculate suitability and population
// TODO: normalize according to the base-map
rankCells();
stage("Porting Cultures");
pack.cultures = parentMap.pack.cultures;
// fix culture centers
const validCultures = new Set(pack.cells.culture);
pack.cultures.forEach((c, i) => {
if (!i) return; // ignore wildlands
if (!validCultures.has(i)) {
c.removed = true;
c.center = null;
return;
}
const newCenters = forwardMap[c.center];
c.center = newCenters.length ? newCenters[0] : pack.cells.culture.findIndex(x => x === i);
});
stage("Porting and locking burgs.");
copyBurgs(parentMap, projection, options);
// transfer states, mark states without land as removed.
stage("Porting states.");
const validStates = new Set(pack.cells.state);
pack.states = parentMap.pack.states;
// keep valid states and neighbors only
pack.states.forEach((s, i) => {
if (!s.i || s.removed) return; // ignore removed and neutrals
if (!validStates.has(i)) s.removed = true;
s.neighbors = s.neighbors.filter(n => validStates.has(n));
// find center
s.center = pack.burgs[s.capital].cell
? pack.burgs[s.capital].cell // capital is the best bet
: pack.cells.state.findIndex(x => x === i); // otherwise use the first valid cell
});
// transfer provinces, mark provinces without land as removed.
stage("Porting provinces.");
const validProvinces = new Set(pack.cells.province);
pack.provinces = parentMap.pack.provinces;
// mark uneccesary provinces
pack.provinces.forEach((p, i) => {
if (!p || p.removed) return;
if (!validProvinces.has(i)) {
p.removed = true;
return;
}
const newCenters = forwardMap[p.center];
p.center = newCenters.length ? newCenters[0] : pack.cells.province.findIndex(x => x === i);
});
BurgsAndStates.drawBurgs();
stage("Regenerating road network.");
Routes.regenerate();
drawStates();
drawBorders();
BurgsAndStates.drawStateLabels();
Rivers.specify();
Lakes.generateName();
stage("Porting military.");
for (const s of pack.states) {
if (!s.military) continue;
for (const m of s.military) {
[m.x, m.y] = projection(m.x, m.y);
[m.bx, m.by] = projection(m.bx, m.by);
const cc = forwardMap[m.cell];
m.cell = cc && cc.length ? cc[0] : null;
}
s.military = s.military.filter(m => m.cell).map((m, i) => ({...m, i}));
}
Military.redraw();
stage("Copying markers.");
for (const m of pack.markers) {
const [x, y] = projection(m.x, m.y);
if (!inMap(x, y)) {
Markers.deleteMarker(m.i);
} else {
m.x = x;
m.y = y;
m.cell = findCell(x, y);
if (options.lockMarkers) m.lock = true;
}
}
if (layerIsOn("toggleMarkers")) drawMarkers();
stage("Redraw emblems.");
drawEmblems();
stage("Regenerating Zones.");
addZones();
Names.getMapName();
stage("Restoring Notes.");
notes = parentMap.notes;
stage("Submap done.");
WARN && console.warn(`TOTAL: ${rn((performance.now() - timeStart) / 1000, 2)}s`);
showStatistics();
INFO && console.groupEnd("Generated Map " + seed);
}
/* find the nearest cell accepted by filter f *and* having at
* least one *neighbor* fulfilling filter g, up to cell-distance `max`
* returns [cellid, neighbor] tuple or undefined if no such cell.
* accepts coordinates (x, y)
*/
const findNearest =
(f, g, max = 3) =>
(px, py) => {
const d2 = c => (px - pack.cells.p[c][0]) ** 2 + (py - pack.cells.p[c][0]) ** 2;
const startCell = findCell(px, py);
const tested = new Set([startCell]); // ignore analyzed cells
const kernel = (cs, level) => {
const [bestf, bestg] = cs.filter(f).reduce(
([cf, cg], c) => {
const neighbors = pack.cells.c[c];
const betterg = neighbors.filter(g).reduce((u, x) => (d2(x) < d2(u) ? x : u));
if (cf === undefined) return [c, betterg];
return betterg && d2(cf) < d2(c) ? [c, betterg] : [cf, cg];
},
[undefined, undefined]
);
if (bestf && bestg) return [bestf, bestg];
// no suitable pair found, retry with next ring
const targets = new Set(cs.map(c => pack.cells.c[c]).flat());
const ring = Array.from(targets).filter(nc => !tested.has(nc));
if (level >= max || !ring.length) return [undefined, undefined];
ring.forEach(c => tested.add(c));
return kernel(ring, level + 1);
};
const pair = kernel([startCell], 1);
return pair;
};
function copyBurgs(parentMap, projection, options) {
const cells = pack.cells;
const childMap = {grid, pack};
pack.burgs = parentMap.pack.burgs;
// remap burgs to the best new cell
pack.burgs.forEach((b, id) => {
if (id == 0) return; // skip empty city of neturals
[b.x, b.y] = projection(b.x, b.y);
b.population = b.population * options.scale; // adjust for populationRate change
// disable out-of-map (removed) burgs
if (!inMap(b.x, b.y)) {
b.removed = true;
b.cell = null;
return;
}
const cityCell = findCell(b.x, b.y);
let searchFunc;
const isFreeLand = c => cells.t[c] === 1 && !cells.burg[c];
const nearCoast = c => cells.t[c] === -1;
// check if we need to relocate the burg
if (cells.burg[cityCell])
// already occupied
searchFunc = findNearest(isFreeLand, _ => true, 3);
if (isWater(childMap, cityCell) || b.port)
// burg is in water or port
searchFunc = findNearest(isFreeLand, nearCoast, 6);
if (searchFunc) {
const [newCell, neighbor] = searchFunc(b.x, b.y);
if (!newCell) {
WARN && console.warn(`Can not relocate Burg: ${b.name} sunk and destroyed. :-(`);
b.cell = null;
b.removed = true;
return;
}
DEBUG && console.log(`Moving ${b.name} from ${cityCell} to ${newCell} near ${neighbor}.`);
[b.x, b.y] = b.port ? getMiddlePoint(newCell, neighbor) : cells.p[newCell];
if (b.port) b.port = cells.f[neighbor]; // copy feature number
b.cell = newCell;
if (b.port && !isWater(childMap, neighbor)) console.error("betrayal! negihbor must be water!", b);
} else {
b.cell = cityCell;
}
if (!b.lock) b.lock = options.lockBurgs;
cells.burg[b.cell] = id;
});
}
// export
return {resample, findNearest};
})();