Fantasy-Map-Generator/modules/routes-generator.js
2020-03-27 17:52:23 +03:00

262 lines
No EOL
10 KiB
JavaScript

(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.Routes = factory());
}(this, (function () {'use strict';
const getRoads = function() {
console.time("generateMainRoads");
const cells = pack.cells, burgs = pack.burgs.filter(b => b.i && !b.removed);
const capitals = burgs.filter(b => b.capital);
if (capitals.length < 2) return []; // not enought capitals to build main roads
const paths = []; // array to store path segments
for (const b of capitals) {
const connect = capitals.filter(c => c.i > b.i && c.feature === b.feature);
if (!connect.length) continue;
const farthest = d3.scan(connect, (a, c) => ((c.y - b.y) ** 2 + (c.x - b.x) ** 2) - ((a.y - b.y) ** 2 + (a.x - b.x) ** 2));
const [from, exit] = findLandPath(b.cell, connect[farthest].cell, null);
const segments = restorePath(b.cell, exit, "main", from);
segments.forEach(s => paths.push(s));
}
cells.i.forEach(i => cells.s[i] += cells.road[i] / 2); // add roads to suitability score
console.timeEnd("generateMainRoads");
return paths;
}
const getTrails = function() {
console.time("generateTrails");
const cells = pack.cells, burgs = pack.burgs.filter(b => b.i && !b.removed);
if (burgs.length < 2) return []; // not enought burgs to build trails
let paths = []; // array to store path segments
for (const f of pack.features.filter(f => f.land)) {
const isle = burgs.filter(b => b.feature === f.i); // burgs on island
if (isle.length < 2) continue;
isle.forEach(function(b, i) {
let path = [];
if (!i) {
// build trail from the first burg on island to the farthest one on the same island
const farthest = d3.scan(isle, (a, c) => ((c.y - b.y) ** 2 + (c.x - b.x) ** 2) - ((a.y - b.y) ** 2 + (a.x - b.x) ** 2));
const to = isle[farthest].cell;
if (cells.road[to]) return;
const [from, exit] = findLandPath(b.cell, to, null);
path = restorePath(b.cell, exit, "small", from);
} else {
// build trail from all other burgs to the closest road on the same island
if (cells.road[b.cell]) return;
const [from, exit] = findLandPath(b.cell, null, true);
if (exit === null) return;
path = restorePath(b.cell, exit, "small", from);
}
if (path) paths = paths.concat(path);
});
}
console.timeEnd("generateTrails");
return paths;
}
const getSearoutes = function() {
console.time("generateSearoutes");
const cells = pack.cells, allPorts = pack.burgs.filter(b => b.port > 0 && !b.removed);
if (allPorts.length < 2) return [];
const bodies = new Set(allPorts.map(b => b.port)); // features with ports
let paths = []; // array to store path segments
bodies.forEach(function(f) {
const ports = allPorts.filter(b => b.port === f);
if (ports.length < 2) return;
const first = ports[0].cell;
const farthest = ports[d3.scan(ports, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
// directly connect first port with the farthest one on the same island to remove gap
void function() {
if (pack.features[f].type === "lake") return;
const portsOnIsland = ports.filter(b => cells.f[b.cell] === cells.f[first]);
if (portsOnIsland.length < 4) return;
const opposite = ports[d3.scan(portsOnIsland, (a, b) => ((b.y - ports[0].y) ** 2 + (b.x - ports[0].x) ** 2) - ((a.y - ports[0].y) ** 2 + (a.x - ports[0].x) ** 2))].cell;
//debug.append("circle").attr("cx", pack.cells.p[opposite][0]).attr("cy", pack.cells.p[opposite][1]).attr("r", 1);
//debug.append("circle").attr("cx", pack.cells.p[first][0]).attr("cy", pack.cells.p[first][1]).attr("fill", "red").attr("r", 1);
const [from, exit, passable] = findOceanPath(opposite, first);
if (!passable) return;
from[first] = cells.haven[first];
const path = restorePath(opposite, first, "ocean", from);
paths = paths.concat(path);
}()
// directly connect first port with the farthest one
void function() {
const [from, exit, passable] = findOceanPath(farthest, first);
if (!passable) return;
from[first] = cells.haven[first];
const path = restorePath(farthest, first, "ocean", from);
paths = paths.concat(path);
}()
// indirectly connect first port with all other ports
void function() {
if (ports.length < 3) return;
for (const p of ports) {
if (p.cell === first || p.cell === farthest) continue;
const [from, exit, passable] = findOceanPath(p.cell, first, true);
if (!passable) continue;
const path = restorePath(p.cell, exit, "ocean", from);
paths = paths.concat(path);
}
}()
});
console.timeEnd("generateSearoutes");
return paths;
}
const draw = function(main, small, ocean) {
console.time("drawRoutes");
const cells = pack.cells, burgs = pack.burgs;
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
// main routes
roads.selectAll("path").data(main).enter().append("path")
.attr("id", (d, i) => "road" + i)
.attr("d", d => round(lineGen(d.map(c => {
const b = cells.burg[c];
const x = b ? burgs[b].x : cells.p[c][0];
const y = b ? burgs[b].y : cells.p[c][1];
return [x, y];
})), 1));
// small routes
trails.selectAll("path").data(small).enter().append("path")
.attr("id", (d, i) => "trail" + i)
.attr("d", d => round(lineGen(d.map(c => {
const b = cells.burg[c];
const x = b ? burgs[b].x : cells.p[c][0];
const y = b ? burgs[b].y : cells.p[c][1];
return [x, y];
})), 1));
// ocean routes
lineGen.curve(d3.curveBundle.beta(1));
searoutes.selectAll("path").data(ocean).enter().append("path")
.attr("id", (d, i) => "searoute" + i)
.attr("d", d => round(lineGen(d.map(c => {
const b = cells.burg[c];
const x = b ? burgs[b].x : cells.p[c][0];
const y = b ? burgs[b].y : cells.p[c][1];
return [x, y];
})), 1));
console.timeEnd("drawRoutes");
}
const regenerate = function() {
routes.selectAll("path").remove();
pack.cells.road = new Uint16Array(pack.cells.i.length);
pack.cells.crossroad = new Uint16Array(pack.cells.i.length);
const main = getRoads();
const small = getTrails();
const ocean = getSearoutes();
draw(main, small, ocean);
}
return {getRoads, getTrails, getSearoutes, draw, regenerate};
// Find a land path to a specific cell (exit), to a closest road (toRoad), or to all reachable cells (null, null)
function findLandPath(start, exit = null, toRoad = null) {
const cells = pack.cells;
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
const cost = [], from = [];
queue.queue({e: start, p: 0});
while (queue.length) {
const next = queue.dequeue(), n = next.e, p = next.p;
if (toRoad && cells.road[n]) return [from, n];
for (const c of cells.c[n]) {
if (cells.h[c] < 20) continue; // ignore water cells
const stateChangeCost = cells.state && cells.state[c] !== cells.state[n] ? 400 : 0; // trails tend to lay within the same state
const habitability = biomesData.habitability[cells.biome[c]];
const habitedCost = habitability ? Math.max(100 - habitability, 0) : 400; // routes tend to lay within populated areas
const heightChangeCost = Math.abs(cells.h[c] - cells.h[n]) * 10; // routes tend to avoid elevation changes
const heightCost = cells.h[c] > 80 ? cells.h[c] : 0; // routes tend to avoid mountainous areas
const cellCoast = 10 + stateChangeCost + habitedCost + heightChangeCost + heightCost;
const totalCost = p + (cells.road[c] || cells.burg[c] ? cellCoast / 3 : cellCoast);
if (from[c] || totalCost >= cost[c]) continue;
from[c] = n;
if (c === exit) return [from, exit];
cost[c] = totalCost;
queue.queue({e: c, p: totalCost});
}
}
return [from, exit];
}
function restorePath(start, end, type, from) {
const cells = pack.cells;
const path = []; // to store all segments;
let segment = [], current = end, prev = end;
const score = type === "main" ? 5 : 1; // to incrade road score at cell
if (type === "ocean" || !cells.road[prev]) segment.push(end);
if (!cells.road[prev]) cells.road[prev] = score;
for (let i = 0, limit = 1000; i < limit; i++) {
if (!from[current]) break;
current = from[current];
if (cells.road[current]) {
if (segment.length) {
segment.push(current);
path.push(segment);
if (segment[0] !== end) {cells.road[segment[0]] += score; cells.crossroad[segment[0]] += score;}
if (current !== start) {cells.road[current] += score; cells.crossroad[current] += score;}
}
segment = [];
prev = current;
} else {
if (prev) segment.push(prev);
prev = null;
segment.push(current);
}
cells.road[current] += score;
if (current === start) break;
}
if (segment.length > 1) path.push(segment);
return path;
}
// find water paths
function findOceanPath(start, exit = null, toRoute = null) {
const cells = pack.cells;
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
const cost = [], from = [];
queue.queue({e: start, p: 0});
while (queue.length) {
const next = queue.dequeue(), n = next.e, p = next.p;
if (toRoute && n !== start && cells.road[n]) return [from, n, true];
for (const c of cells.c[n]) {
if (c === exit) {from[c] = n; return [from, exit, true];}
if (cells.h[c] >= 20) continue; // ignore land cells
const dist2 = (cells.p[c][1] - cells.p[n][1]) ** 2 + (cells.p[c][0] - cells.p[n][0]) ** 2;
const totalCost = p + (cells.road[c] ? 1 + dist2 / 2 : dist2 + (cells.t[c] ? 1 : 100));
if (from[c] || totalCost >= cost[c]) continue;
from[c] = n, cost[c] = totalCost;
queue.queue({e: c, p: totalCost});
}
}
return [from, exit, false];
}
})));