mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-21 19:41:23 +01:00
feat: searoute - change pathfinding algo
This commit is contained in:
parent
dfd80f2c81
commit
22edfb0dec
3 changed files with 64 additions and 281 deletions
|
|
@ -1,273 +0,0 @@
|
|||
window.RoutesOld = (function () {
|
||||
const getRoads = function () {
|
||||
TIME && console.time("generateMainRoads");
|
||||
const cells = pack.cells;
|
||||
const burgs = pack.burgs.filter(b => b.i && !b.removed);
|
||||
const capitals = burgs.filter(b => b.capital).sort((a, b) => a.population - b.population);
|
||||
|
||||
if (capitals.length < 2) return []; // not enough capitals to build main roads
|
||||
const paths = []; // array to store path segments
|
||||
|
||||
for (const b of capitals) {
|
||||
const connect = capitals.filter(c => c.feature === b.feature && c !== b);
|
||||
for (const t of connect) {
|
||||
const [from, exit] = findLandPath(b.cell, t.cell, true);
|
||||
const segments = restorePath(b.cell, exit, "main", from);
|
||||
segments.forEach(s => paths.push(s));
|
||||
}
|
||||
}
|
||||
|
||||
cells.i.forEach(i => (cells.s[i] += cells.route[i] / 2)); // add roads to suitability score
|
||||
TIME && console.timeEnd("generateMainRoads");
|
||||
return paths;
|
||||
};
|
||||
|
||||
const getTrails = function () {
|
||||
TIME && console.time("generateTrails");
|
||||
const cells = pack.cells;
|
||||
const burgs = pack.burgs.filter(b => b.i && !b.removed);
|
||||
|
||||
if (burgs.length < 2) return []; // not enough burgs to build trails
|
||||
|
||||
let paths = []; // array to store path segments
|
||||
for (const f of pack.features.filter(f => f.land)) {
|
||||
const isle = burgs.filter(b => b.feature === f.i); // burgs on island
|
||||
if (isle.length < 2) continue;
|
||||
|
||||
isle.forEach(function (b, i) {
|
||||
let path = [];
|
||||
if (!i) {
|
||||
// build trail from the first burg on island
|
||||
// to the farthest one on the same island or the closest road
|
||||
const farthest = d3.scan(
|
||||
isle,
|
||||
(a, c) => (c.y - b.y) ** 2 + (c.x - b.x) ** 2 - ((a.y - b.y) ** 2 + (a.x - b.x) ** 2)
|
||||
);
|
||||
const to = isle[farthest].cell;
|
||||
if (cells.route[to]) return;
|
||||
const [from, exit] = findLandPath(b.cell, to, true);
|
||||
path = restorePath(b.cell, exit, "small", from);
|
||||
} else {
|
||||
// build trail from all other burgs to the closest road on the same island
|
||||
if (cells.route[b.cell]) return;
|
||||
const [from, exit] = findLandPath(b.cell, null, true);
|
||||
if (exit === null) return;
|
||||
path = restorePath(b.cell, exit, "small", from);
|
||||
}
|
||||
if (path) paths = paths.concat(path);
|
||||
});
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("generateTrails");
|
||||
return paths;
|
||||
};
|
||||
|
||||
const getSearoutes = function () {
|
||||
TIME && console.time("generateSearoutes");
|
||||
const {cells, burgs, features} = pack;
|
||||
const allPorts = burgs.filter(b => b.port > 0 && !b.removed);
|
||||
|
||||
if (!allPorts.length) return [];
|
||||
|
||||
const bodies = new Set(allPorts.map(b => b.port)); // water features with ports
|
||||
let paths = []; // array to store path segments
|
||||
const connected = []; // store cell id of connected burgs
|
||||
|
||||
bodies.forEach(f => {
|
||||
const ports = allPorts.filter(b => b.port === f); // all ports on the same feature
|
||||
if (!ports.length) return;
|
||||
|
||||
if (features[f]?.border) addOverseaRoute(f, ports[0]);
|
||||
|
||||
// get inner-map routes
|
||||
for (let s = 0; s < ports.length; s++) {
|
||||
const source = ports[s].cell;
|
||||
if (connected[source]) continue;
|
||||
|
||||
for (let t = s + 1; t < ports.length; t++) {
|
||||
const target = ports[t].cell;
|
||||
if (connected[target]) continue;
|
||||
|
||||
const [from, exit, passable] = findOceanPath(target, source, true);
|
||||
if (!passable) continue;
|
||||
|
||||
const path = restorePath(target, exit, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
|
||||
connected[source] = 1;
|
||||
connected[target] = 1;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
function addOverseaRoute(f, port) {
|
||||
const {x, y, cell: source} = port;
|
||||
const dist = p => Math.abs(p[0] - x) + Math.abs(p[1] - y);
|
||||
const [x1, y1] = [
|
||||
[0, y],
|
||||
[x, 0],
|
||||
[graphWidth, y],
|
||||
[x, graphHeight]
|
||||
].sort((a, b) => dist(a) - dist(b))[0];
|
||||
const target = findCell(x1, y1);
|
||||
|
||||
if (cells.f[target] === f && cells.h[target] < 20) {
|
||||
const [from, exit, passable] = findOceanPath(target, source, true);
|
||||
|
||||
if (passable) {
|
||||
const path = restorePath(target, exit, "ocean", from);
|
||||
paths = paths.concat(path);
|
||||
last(path).push([x1, y1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TIME && console.timeEnd("generateSearoutes");
|
||||
return paths;
|
||||
};
|
||||
|
||||
const draw = function (main, small, water) {
|
||||
TIME && console.time("drawRoutes");
|
||||
const {cells, burgs} = pack;
|
||||
const {burg, p} = cells;
|
||||
|
||||
const getBurgCoords = b => [burgs[b].x, burgs[b].y];
|
||||
const getPathPoints = cells => cells.map(i => (Array.isArray(i) ? i : burg[i] ? getBurgCoords(burg[i]) : p[i]));
|
||||
const getPath = segment => round(lineGen(getPathPoints(segment)), 1);
|
||||
const getPathsHTML = (paths, type) =>
|
||||
paths.map((path, i) => `<path id="${type}${i}" d="${getPath(path)}" />`).join("");
|
||||
|
||||
lineGen.curve(d3.curveCatmullRom.alpha(0.1));
|
||||
roads.html(getPathsHTML(main, "road"));
|
||||
trails.html(getPathsHTML(small, "trail"));
|
||||
|
||||
lineGen.curve(d3.curveBundle.beta(1));
|
||||
searoutes.html(getPathsHTML(water, "searoute"));
|
||||
|
||||
TIME && console.timeEnd("drawRoutes");
|
||||
};
|
||||
|
||||
const regenerate = function () {
|
||||
routes.selectAll("path").remove();
|
||||
pack.cells.route = new Uint16Array(pack.cells.i.length);
|
||||
pack.cells.crossroad = new Uint16Array(pack.cells.i.length);
|
||||
const main = getRoads();
|
||||
const small = getTrails();
|
||||
const water = getSearoutes();
|
||||
draw(main, small, water);
|
||||
};
|
||||
|
||||
return {getRoads, getTrails, getSearoutes, draw, regenerate};
|
||||
|
||||
// Find a land path to a specific cell (exit), to a closest road (toRoad), or to all reachable cells (null, null)
|
||||
function findLandPath(start, exit = null, toRoad = null) {
|
||||
const cells = pack.cells;
|
||||
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
|
||||
const cost = [],
|
||||
from = [];
|
||||
queue.queue({e: start, p: 0});
|
||||
|
||||
while (queue.length) {
|
||||
const next = queue.dequeue(),
|
||||
n = next.e,
|
||||
p = next.p;
|
||||
if (toRoad && cells.route[n]) return [from, n];
|
||||
|
||||
for (const c of cells.c[n]) {
|
||||
if (cells.h[c] < 20) continue; // ignore water cells
|
||||
const stateChangeCost = cells.state && cells.state[c] !== cells.state[n] ? 400 : 0; // trails tend to lay within the same state
|
||||
const habitability = biomesData.habitability[cells.biome[c]];
|
||||
if (!habitability) continue; // avoid inhabitable cells (eg. lava, glacier)
|
||||
const habitedCost = habitability ? Math.max(100 - habitability, 0) : 400; // routes tend to lay within populated areas
|
||||
const heightChangeCost = Math.abs(cells.h[c] - cells.h[n]) * 10; // routes tend to avoid elevation changes
|
||||
const heightCost = cells.h[c] > 80 ? cells.h[c] : 0; // routes tend to avoid mountainous areas
|
||||
const cellCoast = 10 + stateChangeCost + habitedCost + heightChangeCost + heightCost;
|
||||
const totalCost = p + (cells.route[c] || cells.burg[c] ? cellCoast / 3 : cellCoast);
|
||||
|
||||
if (from[c] || totalCost >= cost[c]) continue;
|
||||
from[c] = n;
|
||||
if (c === exit) return [from, exit];
|
||||
cost[c] = totalCost;
|
||||
queue.queue({e: c, p: totalCost});
|
||||
}
|
||||
}
|
||||
return [from, exit];
|
||||
}
|
||||
|
||||
function restorePath(start, end, type, from) {
|
||||
const cells = pack.cells;
|
||||
const path = []; // to store all segments;
|
||||
let segment = [],
|
||||
current = end,
|
||||
prev = end;
|
||||
const score = type === "main" ? 5 : 1; // to increase road score at cell
|
||||
|
||||
if (type === "ocean" || !cells.route[prev]) segment.push(end);
|
||||
if (!cells.route[prev]) cells.route[prev] = score;
|
||||
|
||||
for (let i = 0, limit = 1000; i < limit; i++) {
|
||||
if (!from[current]) break;
|
||||
current = from[current];
|
||||
|
||||
if (cells.route[current]) {
|
||||
if (segment.length) {
|
||||
segment.push(current);
|
||||
path.push(segment);
|
||||
if (segment[0] !== end) {
|
||||
cells.route[segment[0]] += score;
|
||||
cells.crossroad[segment[0]] += score;
|
||||
}
|
||||
if (current !== start) {
|
||||
cells.route[current] += score;
|
||||
cells.crossroad[current] += score;
|
||||
}
|
||||
}
|
||||
segment = [];
|
||||
prev = current;
|
||||
} else {
|
||||
if (prev) segment.push(prev);
|
||||
prev = null;
|
||||
segment.push(current);
|
||||
}
|
||||
|
||||
cells.route[current] += score;
|
||||
if (current === start) break;
|
||||
}
|
||||
|
||||
if (segment.length > 1) path.push(segment);
|
||||
return path;
|
||||
}
|
||||
|
||||
// find water paths
|
||||
function findOceanPath(start, exit = null, toRoute = null) {
|
||||
const cells = pack.cells,
|
||||
temp = grid.cells.temp;
|
||||
const queue = new PriorityQueue({comparator: (a, b) => a.p - b.p});
|
||||
const cost = [],
|
||||
from = [];
|
||||
queue.queue({e: start, p: 0});
|
||||
|
||||
while (queue.length) {
|
||||
const next = queue.dequeue(),
|
||||
n = next.e,
|
||||
p = next.p;
|
||||
if (toRoute && n !== start && cells.route[n]) return [from, n, true];
|
||||
|
||||
for (const c of cells.c[n]) {
|
||||
if (c === exit) {
|
||||
from[c] = n;
|
||||
return [from, exit, true];
|
||||
}
|
||||
if (cells.h[c] >= 20) continue; // ignore land cells
|
||||
if (temp[cells.g[c]] <= -5) continue; // ignore cells with term <= -5
|
||||
const dist2 = (cells.p[c][1] - cells.p[n][1]) ** 2 + (cells.p[c][0] - cells.p[n][0]) ** 2;
|
||||
const totalCost = p + (cells.route[c] ? 1 + dist2 / 2 : dist2 + (cells.t[c] ? 1 : 100));
|
||||
|
||||
if (from[c] || totalCost >= cost[c]) continue;
|
||||
(from[c] = n), (cost[c] = totalCost);
|
||||
queue.queue({e: c, p: totalCost});
|
||||
}
|
||||
}
|
||||
return [from, exit, false];
|
||||
}
|
||||
})();
|
||||
|
|
@ -1,3 +1,20 @@
|
|||
// suggested data format
|
||||
|
||||
// pack.cells.connectivity = {
|
||||
// cellId1: {
|
||||
// toCellId2: routeId2,
|
||||
// toCellId3: routeId2,
|
||||
// },
|
||||
// cellId2: {
|
||||
// toCellId1: routeId2,
|
||||
// toCellId3: routeId1,
|
||||
// }
|
||||
// }
|
||||
|
||||
// pack.routes = [
|
||||
// {i, group: "roads", feature: featureId, cells: [cellId], points?: [[x, y], [x, y]]}
|
||||
// ];
|
||||
|
||||
window.Routes = (function () {
|
||||
const ROUTES = {
|
||||
MAIN_ROAD: 1,
|
||||
|
|
@ -91,14 +108,36 @@ window.Routes = (function () {
|
|||
TIME && console.time("generateSeaRoutes");
|
||||
const seaRoutes = [];
|
||||
|
||||
let skip = false;
|
||||
|
||||
for (const [featureId, featurePorts] of Object.entries(portsByFeature)) {
|
||||
const points = featurePorts.map(burg => [burg.x, burg.y]);
|
||||
const urquhartEdges = calculateUrquhartEdges(points);
|
||||
console.log(urquhartEdges);
|
||||
|
||||
urquhartEdges.forEach(([fromId, toId]) => {
|
||||
const start = featurePorts[fromId].cell;
|
||||
const exit = featurePorts[toId].cell;
|
||||
|
||||
if (skip) return;
|
||||
if (start === 444 && exit === 297) {
|
||||
// if (segment.join(",") === "124,122,120") debugger;
|
||||
skip = true;
|
||||
|
||||
for (const con of connections) {
|
||||
const [from, to] = con[0].split("-").map(Number);
|
||||
const [x1, y1] = cells.p[from];
|
||||
const [x2, y2] = cells.p[to];
|
||||
debug
|
||||
.append("line")
|
||||
.attr("x1", x1)
|
||||
.attr("y1", y1)
|
||||
.attr("x2", x2)
|
||||
.attr("y2", y2)
|
||||
.attr("stroke", "red")
|
||||
.attr("stroke-width", 0.2);
|
||||
}
|
||||
}
|
||||
|
||||
const segments = findPathSegments({isWater: true, connections, start, exit});
|
||||
for (const segment of segments) {
|
||||
addConnections(segment, ROUTES.SEA_ROUTE);
|
||||
|
|
@ -170,6 +209,8 @@ window.Routes = (function () {
|
|||
const queue = new FlatQueue();
|
||||
queue.push(start, 0);
|
||||
|
||||
const isDebug = start === 444 && exit === 297;
|
||||
|
||||
return isWater ? findWaterPath() : findLandPath();
|
||||
|
||||
function findLandPath() {
|
||||
|
|
@ -188,7 +229,7 @@ window.Routes = (function () {
|
|||
const habitabilityModifier = 1 + Math.max(100 - habitability, 0) / 1000; // [1, 1.1];
|
||||
const heightModifier = 1 + Math.max(cells.h[neibCellId] - 25, 25) / 25; // [1, 3];
|
||||
const connectionModifier = connections.has(`${next}-${neibCellId}`) ? 1 : 3;
|
||||
const burgModifier = cells.burg[neibCellId] ? 1 : 2;
|
||||
const burgModifier = cells.burg[neibCellId] ? 1 : 3;
|
||||
|
||||
const cellsCost = distanceCost * habitabilityModifier * heightModifier * connectionModifier * burgModifier;
|
||||
const totalCost = priority + cellsCost;
|
||||
|
|
@ -210,13 +251,16 @@ window.Routes = (function () {
|
|||
while (queue.length) {
|
||||
const priority = queue.peekValue();
|
||||
const next = queue.pop();
|
||||
isDebug && console.log("next", next);
|
||||
|
||||
for (const neibCellId of cells.c[next]) {
|
||||
if (neibCellId === exit) {
|
||||
isDebug && console.log(`neib ${neibCellId} is exit`);
|
||||
from[neibCellId] = next;
|
||||
return from;
|
||||
}
|
||||
|
||||
// if (from[neibCellId]) continue; // don't go back
|
||||
if (cells.h[neibCellId] >= 20) continue; // ignore land cells
|
||||
if (temp[cells.g[neibCellId]] < MIN_PASSABLE_SEA_TEMP) continue; // ignore too cold cells
|
||||
|
||||
|
|
@ -227,7 +271,17 @@ window.Routes = (function () {
|
|||
const cellsCost = distanceCost * typeModifier * connectionModifier;
|
||||
const totalCost = priority + cellsCost;
|
||||
|
||||
if (from[neibCellId] || totalCost >= cost[neibCellId]) continue;
|
||||
if (isDebug) {
|
||||
const lost = totalCost >= cost[neibCellId];
|
||||
console.log(
|
||||
`neib ${neibCellId}`,
|
||||
`cellCost ${rn(cellsCost)}`,
|
||||
`new ${rn(totalCost)} ${lost ? ">=" : "<"} prev ${rn(cost[neibCellId])}.`,
|
||||
`${lost ? "lost" : "won"}`
|
||||
);
|
||||
}
|
||||
|
||||
if (totalCost >= cost[neibCellId]) continue;
|
||||
from[neibCellId] = next;
|
||||
|
||||
cost[neibCellId] = totalCost;
|
||||
|
|
|
|||
|
|
@ -1653,11 +1653,11 @@ function drawRoutes() {
|
|||
};
|
||||
|
||||
for (const {i, group, cells} of pack.routes) {
|
||||
if (group !== "searoutes") straightenPathAngles(cells); // mutates points
|
||||
// if (group !== "searoutes") straightenPathAngles(cells); // mutates points
|
||||
const pathPoints = getPathPoints(cells);
|
||||
|
||||
// TODO: temporary view for searoutes
|
||||
if (group === "searoutes2") {
|
||||
if (group) {
|
||||
const pathPoints = cells.map(cellId => points[cellId]);
|
||||
const color = getMixedColor("#000000", 0.6);
|
||||
const line = "M" + pathPoints.join("L");
|
||||
|
|
@ -1667,9 +1667,9 @@ function drawRoutes() {
|
|||
if (!routePaths[group]) routePaths[group] = [];
|
||||
routePaths[group].push(`<path id="route${i}" d="${line}" stroke=${color} />`);
|
||||
|
||||
lineGen.curve(curves[group] || curves.default);
|
||||
const path = round(lineGen(pathPoints), 1);
|
||||
routePaths[group].push(`<path id="route${i}" d="${path}" stroke-width="0.15"/> `);
|
||||
// lineGen.curve(curves[group] || curves.default);
|
||||
// const path = round(lineGen(pathPoints), 1);
|
||||
// routePaths[group].push(`<path id="route${i}" d="${path}" stroke-width="0.15"/> `);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
@ -1685,6 +1685,8 @@ function drawRoutes() {
|
|||
routes.select("#" + group).html(routePaths[group].join(""));
|
||||
}
|
||||
|
||||
drawCellsValue(pack.cells.i);
|
||||
|
||||
TIME && console.timeEnd("drawRoutes");
|
||||
|
||||
function adjustBurgPoints() {
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue