feat: Implement HeightmapGenerator and Voronoi module

- Added HeightmapGenerator class for generating heightmaps with various tools (Hill, Pit, Range, Trough, Strait, etc.).
- Introduced Voronoi class for creating Voronoi diagrams using Delaunator.
- Updated index.html to include new modules.
- Created index.ts to manage module imports.
- Enhanced arrayUtils and graphUtils with type definitions and improved functionality.
- Added utility functions for generating grids and calculating Voronoi cells.
This commit is contained in:
Marc Emmanuel 2026-01-16 13:12:56 +01:00
parent fa493989b6
commit 4b5e9bfeea
8 changed files with 748 additions and 601 deletions

View file

@ -1,543 +0,0 @@
"use strict";
window.HeightmapGenerator = (function () {
let grid = null;
let heights = null;
let blobPower;
let linePower;
const setGraph = graph => {
const {cellsDesired, cells, points} = graph;
heights = cells.h ? Uint8Array.from(cells.h) : createTypedArray({maxValue: 100, length: points.length});
blobPower = getBlobPower(cellsDesired);
linePower = getLinePower(cellsDesired);
grid = graph;
};
const getHeights = () => heights;
const clearData = () => {
heights = null;
grid = null;
};
const fromTemplate = (graph, id) => {
const templateString = heightmapTemplates[id]?.template || "";
const steps = templateString.split("\n");
if (!steps.length) throw new Error(`Heightmap template: no steps. Template: ${id}. Steps: ${steps}`);
setGraph(graph);
for (const step of steps) {
const elements = step.trim().split(" ");
if (elements.length < 2) throw new Error(`Heightmap template: steps < 2. Template: ${id}. Step: ${elements}`);
addStep(...elements);
}
return heights;
};
const fromPrecreated = (graph, id) => {
return new Promise(resolve => {
// create canvas where 1px corresponts to a cell
const canvas = document.createElement("canvas");
const ctx = canvas.getContext("2d");
const {cellsX, cellsY} = graph;
canvas.width = cellsX;
canvas.height = cellsY;
// load heightmap into image and render to canvas
const img = new Image();
img.src = `./heightmaps/${id}.png`;
img.onload = () => {
ctx.drawImage(img, 0, 0, cellsX, cellsY);
const imageData = ctx.getImageData(0, 0, cellsX, cellsY);
setGraph(graph);
getHeightsFromImageData(imageData.data);
canvas.remove();
img.remove();
resolve(heights);
};
});
};
const generate = async function (graph) {
TIME && console.time("defineHeightmap");
const id = byId("templateInput").value;
Math.random = aleaPRNG(seed);
const isTemplate = id in heightmapTemplates;
const heights = isTemplate ? fromTemplate(graph, id) : await fromPrecreated(graph, id);
TIME && console.timeEnd("defineHeightmap");
clearData();
return heights;
};
function addStep(tool, a2, a3, a4, a5) {
if (tool === "Hill") return addHill(a2, a3, a4, a5);
if (tool === "Pit") return addPit(a2, a3, a4, a5);
if (tool === "Range") return addRange(a2, a3, a4, a5);
if (tool === "Trough") return addTrough(a2, a3, a4, a5);
if (tool === "Strait") return addStrait(a2, a3);
if (tool === "Mask") return mask(a2);
if (tool === "Invert") return invert(a2, a3);
if (tool === "Add") return modify(a3, +a2, 1);
if (tool === "Multiply") return modify(a3, 0, +a2);
if (tool === "Smooth") return smooth(a2);
}
function getBlobPower(cells) {
const blobPowerMap = {
1000: 0.93,
2000: 0.95,
5000: 0.97,
10000: 0.98,
20000: 0.99,
30000: 0.991,
40000: 0.993,
50000: 0.994,
60000: 0.995,
70000: 0.9955,
80000: 0.996,
90000: 0.9964,
100000: 0.9973
};
return blobPowerMap[cells] || 0.98;
}
function getLinePower(cells) {
const linePowerMap = {
1000: 0.75,
2000: 0.77,
5000: 0.79,
10000: 0.81,
20000: 0.82,
30000: 0.83,
40000: 0.84,
50000: 0.86,
60000: 0.87,
70000: 0.88,
80000: 0.91,
90000: 0.92,
100000: 0.93
};
return linePowerMap[cells] || 0.81;
}
const addHill = (count, height, rangeX, rangeY) => {
count = getNumberInRange(count);
while (count > 0) {
addOneHill();
count--;
}
function addOneHill() {
const change = new Uint8Array(heights.length);
let limit = 0;
let start;
let h = lim(getNumberInRange(height));
do {
const x = getPointInRange(rangeX, graphWidth);
const y = getPointInRange(rangeY, graphHeight);
start = findGridCell(x, y, grid);
limit++;
} while (heights[start] + h > 90 && limit < 50);
change[start] = h;
const queue = [start];
while (queue.length) {
const q = queue.shift();
for (const c of grid.cells.c[q]) {
if (change[c]) continue;
change[c] = change[q] ** blobPower * (Math.random() * 0.2 + 0.9);
if (change[c] > 1) queue.push(c);
}
}
heights = heights.map((h, i) => lim(h + change[i]));
}
};
const addPit = (count, height, rangeX, rangeY) => {
count = getNumberInRange(count);
while (count > 0) {
addOnePit();
count--;
}
function addOnePit() {
const used = new Uint8Array(heights.length);
let limit = 0,
start;
let h = lim(getNumberInRange(height));
do {
const x = getPointInRange(rangeX, graphWidth);
const y = getPointInRange(rangeY, graphHeight);
start = findGridCell(x, y, grid);
limit++;
} while (heights[start] < 20 && limit < 50);
const queue = [start];
while (queue.length) {
const q = queue.shift();
h = h ** blobPower * (Math.random() * 0.2 + 0.9);
if (h < 1) return;
grid.cells.c[q].forEach(function (c, i) {
if (used[c]) return;
heights[c] = lim(heights[c] - h * (Math.random() * 0.2 + 0.9));
used[c] = 1;
queue.push(c);
});
}
}
};
// fromCell, toCell are options cell ids
const addRange = (count, height, rangeX, rangeY, startCell, endCell) => {
count = getNumberInRange(count);
while (count > 0) {
addOneRange();
count--;
}
function addOneRange() {
const used = new Uint8Array(heights.length);
let h = lim(getNumberInRange(height));
if (rangeX && rangeY) {
// find start and end points
const startX = getPointInRange(rangeX, graphWidth);
const startY = getPointInRange(rangeY, graphHeight);
let dist = 0,
limit = 0,
endX,
endY;
do {
endX = Math.random() * graphWidth * 0.8 + graphWidth * 0.1;
endY = Math.random() * graphHeight * 0.7 + graphHeight * 0.15;
dist = Math.abs(endY - startY) + Math.abs(endX - startX);
limit++;
} while ((dist < graphWidth / 8 || dist > graphWidth / 3) && limit < 50);
startCell = findGridCell(startX, startY, grid);
endCell = findGridCell(endX, endY, grid);
}
let range = getRange(startCell, endCell);
// get main ridge
function getRange(cur, end) {
const range = [cur];
const p = grid.points;
used[cur] = 1;
while (cur !== end) {
let min = Infinity;
grid.cells.c[cur].forEach(function (e) {
if (used[e]) return;
let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2;
if (Math.random() > 0.85) diff = diff / 2;
if (diff < min) {
min = diff;
cur = e;
}
});
if (min === Infinity) return range;
range.push(cur);
used[cur] = 1;
}
return range;
}
// add height to ridge and cells around
let queue = range.slice(),
i = 0;
while (queue.length) {
const frontier = queue.slice();
(queue = []), i++;
frontier.forEach(i => {
heights[i] = lim(heights[i] + h * (Math.random() * 0.3 + 0.85));
});
h = h ** linePower - 1;
if (h < 2) break;
frontier.forEach(f => {
grid.cells.c[f].forEach(i => {
if (!used[i]) {
queue.push(i);
used[i] = 1;
}
});
});
}
// generate prominences
range.forEach((cur, d) => {
if (d % 6 !== 0) return;
for (const l of d3.range(i)) {
const min = grid.cells.c[cur][d3.scan(grid.cells.c[cur], (a, b) => heights[a] - heights[b])]; // downhill cell
heights[min] = (heights[cur] * 2 + heights[min]) / 3;
cur = min;
}
});
}
};
const addTrough = (count, height, rangeX, rangeY, startCell, endCell) => {
count = getNumberInRange(count);
while (count > 0) {
addOneTrough();
count--;
}
function addOneTrough() {
const used = new Uint8Array(heights.length);
let h = lim(getNumberInRange(height));
if (rangeX && rangeY) {
// find start and end points
let limit = 0,
startX,
startY,
dist = 0,
endX,
endY;
do {
startX = getPointInRange(rangeX, graphWidth);
startY = getPointInRange(rangeY, graphHeight);
startCell = findGridCell(startX, startY, grid);
limit++;
} while (heights[startCell] < 20 && limit < 50);
limit = 0;
do {
endX = Math.random() * graphWidth * 0.8 + graphWidth * 0.1;
endY = Math.random() * graphHeight * 0.7 + graphHeight * 0.15;
dist = Math.abs(endY - startY) + Math.abs(endX - startX);
limit++;
} while ((dist < graphWidth / 8 || dist > graphWidth / 2) && limit < 50);
endCell = findGridCell(endX, endY, grid);
}
let range = getRange(startCell, endCell);
// get main ridge
function getRange(cur, end) {
const range = [cur];
const p = grid.points;
used[cur] = 1;
while (cur !== end) {
let min = Infinity;
grid.cells.c[cur].forEach(function (e) {
if (used[e]) return;
let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2;
if (Math.random() > 0.8) diff = diff / 2;
if (diff < min) {
min = diff;
cur = e;
}
});
if (min === Infinity) return range;
range.push(cur);
used[cur] = 1;
}
return range;
}
// add height to ridge and cells around
let queue = range.slice(),
i = 0;
while (queue.length) {
const frontier = queue.slice();
(queue = []), i++;
frontier.forEach(i => {
heights[i] = lim(heights[i] - h * (Math.random() * 0.3 + 0.85));
});
h = h ** linePower - 1;
if (h < 2) break;
frontier.forEach(f => {
grid.cells.c[f].forEach(i => {
if (!used[i]) {
queue.push(i);
used[i] = 1;
}
});
});
}
// generate prominences
range.forEach((cur, d) => {
if (d % 6 !== 0) return;
for (const l of d3.range(i)) {
const min = grid.cells.c[cur][d3.scan(grid.cells.c[cur], (a, b) => heights[a] - heights[b])]; // downhill cell
//debug.append("circle").attr("cx", p[min][0]).attr("cy", p[min][1]).attr("r", 1);
heights[min] = (heights[cur] * 2 + heights[min]) / 3;
cur = min;
}
});
}
};
const addStrait = (width, direction = "vertical") => {
width = Math.min(getNumberInRange(width), grid.cellsX / 3);
if (width < 1 && P(width)) return;
const used = new Uint8Array(heights.length);
const vert = direction === "vertical";
const startX = vert ? Math.floor(Math.random() * graphWidth * 0.4 + graphWidth * 0.3) : 5;
const startY = vert ? 5 : Math.floor(Math.random() * graphHeight * 0.4 + graphHeight * 0.3);
const endX = vert
? Math.floor(graphWidth - startX - graphWidth * 0.1 + Math.random() * graphWidth * 0.2)
: graphWidth - 5;
const endY = vert
? graphHeight - 5
: Math.floor(graphHeight - startY - graphHeight * 0.1 + Math.random() * graphHeight * 0.2);
const start = findGridCell(startX, startY, grid);
const end = findGridCell(endX, endY, grid);
let range = getRange(start, end);
const query = [];
function getRange(cur, end) {
const range = [];
const p = grid.points;
while (cur !== end) {
let min = Infinity;
grid.cells.c[cur].forEach(function (e) {
let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2;
if (Math.random() > 0.8) diff = diff / 2;
if (diff < min) {
min = diff;
cur = e;
}
});
range.push(cur);
}
return range;
}
const step = 0.1 / width;
while (width > 0) {
const exp = 0.9 - step * width;
range.forEach(function (r) {
grid.cells.c[r].forEach(function (e) {
if (used[e]) return;
used[e] = 1;
query.push(e);
heights[e] **= exp;
if (heights[e] > 100) heights[e] = 5;
});
});
range = query.slice();
width--;
}
};
const modify = (range, add, mult, power) => {
const min = range === "land" ? 20 : range === "all" ? 0 : +range.split("-")[0];
const max = range === "land" || range === "all" ? 100 : +range.split("-")[1];
const isLand = min === 20;
heights = heights.map(h => {
if (h < min || h > max) return h;
if (add) h = isLand ? Math.max(h + add, 20) : h + add;
if (mult !== 1) h = isLand ? (h - 20) * mult + 20 : h * mult;
if (power) h = isLand ? (h - 20) ** power + 20 : h ** power;
return lim(h);
});
};
const smooth = (fr = 2, add = 0) => {
heights = heights.map((h, i) => {
const a = [h];
grid.cells.c[i].forEach(c => a.push(heights[c]));
if (fr === 1) return d3.mean(a) + add;
return lim((h * (fr - 1) + d3.mean(a) + add) / fr);
});
};
const mask = (power = 1) => {
const fr = power ? Math.abs(power) : 1;
heights = heights.map((h, i) => {
const [x, y] = grid.points[i];
const nx = (2 * x) / graphWidth - 1; // [-1, 1], 0 is center
const ny = (2 * y) / graphHeight - 1; // [-1, 1], 0 is center
let distance = (1 - nx ** 2) * (1 - ny ** 2); // 1 is center, 0 is edge
if (power < 0) distance = 1 - distance; // inverted, 0 is center, 1 is edge
const masked = h * distance;
return lim((h * (fr - 1) + masked) / fr);
});
};
const invert = (count, axes) => {
if (!P(count)) return;
const invertX = axes !== "y";
const invertY = axes !== "x";
const {cellsX, cellsY} = grid;
const inverted = heights.map((h, i) => {
const x = i % cellsX;
const y = Math.floor(i / cellsX);
const nx = invertX ? cellsX - x - 1 : x;
const ny = invertY ? cellsY - y - 1 : y;
const invertedI = nx + ny * cellsX;
return heights[invertedI];
});
heights = inverted;
};
function getPointInRange(range, length) {
if (typeof range !== "string") {
ERROR && console.error("Range should be a string");
return;
}
const min = range.split("-")[0] / 100 || 0;
const max = range.split("-")[1] / 100 || min;
return rand(min * length, max * length);
}
function getHeightsFromImageData(imageData) {
for (let i = 0; i < heights.length; i++) {
const lightness = imageData[i * 4] / 255;
const powered = lightness < 0.2 ? lightness : 0.2 + (lightness - 0.2) ** 0.8;
heights[i] = minmax(Math.floor(powered * 100), 0, 100);
}
}
return {
setGraph,
getHeights,
generate,
fromTemplate,
fromPrecreated,
addHill,
addRange,
addTrough,
addStrait,
addPit,
smooth,
modify,
mask,
invert
};
})();

View file

@ -8465,11 +8465,10 @@
<script src="libs/indexedDB.js?v=1.99.00"></script>
<script type="module" src="utils/index.ts"></script>
<script type="module" src="modules/index.ts"></script>
<script defer src="modules/voronoi.js"></script>
<script defer src="config/heightmap-templates.js"></script>
<script defer src="config/precreated-heightmaps.js"></script>
<script defer src="modules/heightmap-generator.js?v=1.99.00"></script>
<script defer src="modules/features.js?v=1.104.0"></script>
<script defer src="modules/ocean-layers.js?v=1.108.4"></script>
<script defer src="modules/river-generator.js?v=1.106.7"></script>

View file

@ -0,0 +1,580 @@
import Alea from "alea";
import { range as d3Range, leastIndex, mean } from "d3";
import { createTypedArray, byId,findGridCell,getNumberInRange,lim,minmax,P,rand } from "../utils";
declare global {
interface Window {
HeightmapGenerator: HeightmapGenerator;
}
var heightmapTemplates: any;
}
type Tool = "Hill" | "Pit" | "Range" | "Trough" | "Strait" | "Mask" | "Invert" | "Add" | "Multiply" | "Smooth";
class HeightmapGenerator {
grid: any = null;
heights: Uint8Array | null = null;
blobPower: number = 0;
linePower: number = 0;
// TODO: remove after migration to TS and use param in constructor
get seed() {
return (window as any).seed;
}
get graphWidth() {
return (window as any).graphWidth;
}
get graphHeight() {
return (window as any).graphHeight;
}
constructor() {
}
private clearData() {
this.heights = null;
this.grid = null;
};
private getBlobPower(cells: number): number {
const blobPowerMap: Record<number, number> = {
1000: 0.93,
2000: 0.95,
5000: 0.97,
10000: 0.98,
20000: 0.99,
30000: 0.991,
40000: 0.993,
50000: 0.994,
60000: 0.995,
70000: 0.9955,
80000: 0.996,
90000: 0.9964,
100000: 0.9973
};
return blobPowerMap[cells] || 0.98;
}
private getLinePower(cells: number): number {
const linePowerMap: Record<number, number> = {
1000: 0.75,
2000: 0.77,
5000: 0.79,
10000: 0.81,
20000: 0.82,
30000: 0.83,
40000: 0.84,
50000: 0.86,
60000: 0.87,
70000: 0.88,
80000: 0.91,
90000: 0.92,
100000: 0.93
};
return linePowerMap[cells] || 0.81;
}
private getPointInRange(range: string, length: number): number | undefined {
if (typeof range !== "string") {
window.ERROR && console.error("Range should be a string");
return;
}
const min = parseInt(range.split("-")[0]) / 100 || 0;
const max = parseInt(range.split("-")[1]) / 100 || min;
return rand(min * length, max * length);
}
setGraph(graph: any) {
const {cellsDesired, cells, points} = graph;
this.heights = cells.h ? Uint8Array.from(cells.h) : createTypedArray({maxValue: 100, length: points.length}) as Uint8Array;
this.blobPower = this.getBlobPower(cellsDesired);
this.linePower = this.getLinePower(cellsDesired);
this.grid = graph;
};
addHill(count: string, height: string, rangeX: string, rangeY: string): void {
const addOneHill = () => {
if(!this.heights || !this.grid) return;
const change = new Uint8Array(this.heights.length);
let limit = 0;
let start: number;
let h = lim(getNumberInRange(height));
do {
const x = this.getPointInRange(rangeX, this.graphWidth);
const y = this.getPointInRange(rangeY, this.graphHeight);
if (x === undefined || y === undefined) return;
start = findGridCell(x, y, this.grid);
limit++;
} while (this.heights[start] + h > 90 && limit < 50);
change[start] = h;
const queue = [start];
while (queue.length) {
const q = queue.shift() as number;
for (const c of this.grid.cells.c[q]) {
if (change[c]) continue;
change[c] = change[q] ** this.blobPower * (Math.random() * 0.2 + 0.9);
if (change[c] > 1) queue.push(c);
}
}
this.heights = this.heights.map((h, i) => lim(h + change[i]));
}
const desiredHillCount = getNumberInRange(count);
for (let i = 0; i < desiredHillCount; i++) {
addOneHill();
}
};
addPit(count: string, height: string, rangeX: string, rangeY: string): void {
const addOnePit = () => {
if(!this.heights || !this.grid) return;
const used = new Uint8Array(this.heights.length);
let limit = 0;
let start: number;
let h = lim(getNumberInRange(height));
do {
const x = this.getPointInRange(rangeX, this.graphWidth);
const y = this.getPointInRange(rangeY, this.graphHeight);
if (x === undefined || y === undefined) return;
start = findGridCell(x, y, this.grid);
limit++;
} while (this.heights[start] < 20 && limit < 50);
const queue = [start];
while (queue.length) {
const q = queue.shift() as number;
h = h ** this.blobPower * (Math.random() * 0.2 + 0.9);
if (h < 1) return;
this.grid.cells.c[q].forEach((c: number) => {
if (used[c] || this.heights === null) return;
this.heights[c] = lim(this.heights[c] - h * (Math.random() * 0.2 + 0.9));
used[c] = 1;
queue.push(c);
});
}
}
const desiredPitCount = getNumberInRange(count);
for (let i = 0; i < desiredPitCount; i++) {
addOnePit();
}
};
addRange(count: string, height: string, rangeX: string, rangeY: string, startCellId?: number, endCellId?: number): void {
if(!this.heights || !this.grid) return;
const addOneRange = () => {
if(!this.heights || !this.grid) return;
// get main ridge
const getRange = (cur: number, end: number) => {
const range = [cur];
const p = this.grid.points;
used[cur] = 1;
while (cur !== end) {
let min = Infinity;
this.grid.cells.c[cur].forEach((e: number) => {
if (used[e]) return;
let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2;
if (Math.random() > 0.85) diff = diff / 2;
if (diff < min) {
min = diff;
cur = e;
}
});
if (min === Infinity) return range;
range.push(cur);
used[cur] = 1;
}
return range;
}
const used = new Uint8Array(this.heights.length);
let h = lim(getNumberInRange(height));
if (rangeX && rangeY) {
// find start and end points
const startX = this.getPointInRange(rangeX, this.graphWidth) as number;
const startY = this.getPointInRange(rangeY, this.graphHeight) as number;
let dist = 0;
let limit = 0;
let endY;
let endX;
do {
endX = Math.random() * this.graphWidth * 0.8 + this.graphWidth * 0.1;
endY = Math.random() * this.graphHeight * 0.7 + this.graphHeight * 0.15;
dist = Math.abs(endY - startY) + Math.abs(endX - startX);
limit++;
} while ((dist < this.graphWidth / 8 || dist > this.graphWidth / 3) && limit < 50);
startCellId = findGridCell(startX, startY, this.grid);
endCellId = findGridCell(endX, endY, this.grid);
}
let range = getRange(startCellId as number, endCellId as number);
// add height to ridge and cells around
let queue = range.slice();
let i = 0;
while (queue.length) {
const frontier = queue.slice();
(queue = []), i++;
frontier.forEach((i: number) => {
if(!this.heights) return;
this.heights[i] = lim(this.heights[i] + h * (Math.random() * 0.3 + 0.85));
});
h = h ** this.linePower - 1;
if (h < 2) break;
frontier.forEach((f: number) => {
this.grid.cells.c[f].forEach((i: number) => {
if (!used[i]) {
queue.push(i);
used[i] = 1;
}
});
});
}
// generate prominences
range.forEach((cur: number, d: number) => {
if (d % 6 !== 0) return;
for (const _l of d3Range(i)) {
const index = leastIndex(this.grid.cells.c[cur], (a: number, b: number) => this.heights![a] - this.heights![b]);
if(index === undefined) continue;
const min = this.grid.cells.c[cur][index]; // downhill cell
this.heights![min] = (this.heights![cur] * 2 + this.heights![min]) / 3;
cur = min;
}
});
}
const desiredRangeCount = getNumberInRange(count);
for (let i = 0; i < desiredRangeCount; i++) {
addOneRange();
}
};
addTrough(count: string, height: string, rangeX: string, rangeY: string, startCellId?: number, endCellId?: number): void {
const addOneTrough = () => {
if(!this.heights || !this.grid) return;
// get main ridge
const getRange = (cur: number, end: number) => {
const range = [cur];
const p = this.grid.points;
used[cur] = 1;
while (cur !== end) {
let min = Infinity;
this.grid.cells.c[cur].forEach((e: number) => {
if (used[e]) return;
let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2;
if (Math.random() > 0.8) diff = diff / 2;
if (diff < min) {
min = diff;
cur = e;
}
});
if (min === Infinity) return range;
range.push(cur);
used[cur] = 1;
}
return range;
}
const used = new Uint8Array(this.heights.length);
let h = lim(getNumberInRange(height));
if (rangeX && rangeY) {
// find start and end points
let limit = 0;
let startX: number;
let startY: number;
let dist = 0;
let endX: number;
let endY: number;
do {
startX = this.getPointInRange(rangeX, this.graphWidth) as number;
startY = this.getPointInRange(rangeY, this.graphHeight) as number;
startCellId = findGridCell(startX, startY, this.grid);
limit++;
} while (this.heights[startCellId] < 20 && limit < 50);
limit = 0;
do {
endX = Math.random() * this.graphWidth * 0.8 + this.graphWidth * 0.1;
endY = Math.random() * this.graphHeight * 0.7 + this.graphHeight * 0.15;
dist = Math.abs(endY - startY) + Math.abs(endX - startX);
limit++;
} while ((dist < this.graphWidth / 8 || dist > this.graphWidth / 2) && limit < 50);
endCellId = findGridCell(endX, endY, this.grid);
}
let range = getRange(startCellId as number, endCellId as number);
// add height to ridge and cells around
let queue = range.slice(),
i = 0;
while (queue.length) {
const frontier = queue.slice();
(queue = []), i++;
frontier.forEach((i: number) => {
this.heights![i] = lim(this.heights![i] - h * (Math.random() * 0.3 + 0.85));
});
h = h ** this.linePower - 1;
if (h < 2) break;
frontier.forEach((f: number) => {
this.grid.cells.c[f].forEach((i: number) => {
if (!used[i]) {
queue.push(i);
used[i] = 1;
}
});
});
}
// generate prominences
range.forEach((cur: number, d: number) => {
if (d % 6 !== 0) return;
for (const _l of d3Range(i)) {
const index = leastIndex(this.grid.cells.c[cur], (a: number, b: number) => this.heights![a] - this.heights![b]);
if(index === undefined) continue;
const min = this.grid.cells.c[cur][index]; // downhill cell
//debug.append("circle").attr("cx", p[min][0]).attr("cy", p[min][1]).attr("r", 1);
this.heights![min] = (this.heights![cur] * 2 + this.heights![min]) / 3;
cur = min;
}
});
}
const desiredTroughCount = getNumberInRange(count);
for(let i = 0; i < desiredTroughCount; i++) {
addOneTrough();
}
};
addStrait(width: string, direction = "vertical"): void {
if(!this.heights || !this.grid) return;
const desiredWidth = Math.min(getNumberInRange(width), this.grid.cellsX / 3);
if (desiredWidth < 1 && P(desiredWidth)) return;
const used = new Uint8Array(this.heights.length);
const vert = direction === "vertical";
const startX = vert ? Math.floor(Math.random() * this.graphWidth * 0.4 + this.graphWidth * 0.3) : 5;
const startY = vert ? 5 : Math.floor(Math.random() * this.graphHeight * 0.4 + this.graphHeight * 0.3);
const endX = vert
? Math.floor(this.graphWidth - startX - this.graphWidth * 0.1 + Math.random() * this.graphWidth * 0.2)
: this.graphWidth - 5;
const endY = vert
? this.graphHeight - 5
: Math.floor(this.graphHeight - startY - this.graphHeight * 0.1 + Math.random() * this.graphHeight * 0.2);
const start = findGridCell(startX, startY, this.grid);
const end = findGridCell(endX, endY, this.grid);
const getRange = (cur: number, end: number) => {
const range = [];
const p = this.grid.points;
while (cur !== end) {
let min = Infinity;
this.grid.cells.c[cur].forEach((e: number) => {
let diff = (p[end][0] - p[e][0]) ** 2 + (p[end][1] - p[e][1]) ** 2;
if (Math.random() > 0.8) diff = diff / 2;
if (diff < min) {
min = diff;
cur = e;
}
});
range.push(cur);
}
return range;
}
let range = getRange(start, end);
const query: number[] = [];
const step = 0.1 / desiredWidth;
for(let i = 0; i < desiredWidth; i++) {
const exp = 0.9 - step * desiredWidth;
range.forEach((r: number) => {
this.grid.cells.c[r].forEach((e: number) => {
if (used[e]) return;
used[e] = 1;
query.push(e);
this.heights![e] **= exp;
if (this.heights![e] > 100) this.heights![e] = 5;
});
});
range = query.slice();
}
};
modify(range: string, add: number, mult: number, power?: number): void {
if(!this.heights) return;
const min = range === "land" ? 20 : range === "all" ? 0 : +range.split("-")[0];
const max = range === "land" || range === "all" ? 100 : +range.split("-")[1];
const isLand = min === 20;
this.heights = this.heights.map(h => {
if (h < min || h > max) return h;
if (add) h = isLand ? Math.max(h + add, 20) : h + add;
if (mult !== 1) h = isLand ? (h - 20) * mult + 20 : h * mult;
if (power) h = isLand ? (h - 20) ** power + 20 : h ** power;
return lim(h);
});
};
smooth(fr = 2, add = 0): void {
if(!this.heights || !this.grid) return;
this.heights = this.heights.map((h, i) => {
const a = [h];
this.grid.cells.c[i].forEach((c: number) => a.push(this.heights![c]));
if (fr === 1) return (mean(a) as number) + add;
return lim((h * (fr - 1) + (mean(a) as number) + add) / fr);
});
};
mask(power = 1): void {
if(!this.heights || !this.grid) return;
const fr = power ? Math.abs(power) : 1;
this.heights = this.heights.map((h, i) => {
const [x, y] = this.grid.points[i];
const nx = (2 * x) / this.graphWidth - 1; // [-1, 1], 0 is center
const ny = (2 * y) / this.graphHeight - 1; // [-1, 1], 0 is center
let distance = (1 - nx ** 2) * (1 - ny ** 2); // 1 is center, 0 is edge
if (power < 0) distance = 1 - distance; // inverted, 0 is center, 1 is edge
const masked = h * distance;
return lim((h * (fr - 1) + masked) / fr);
});
};
invert(count: number, axes: string): void {
if (!P(count) || !this.heights || !this.grid) return;
const invertX = axes !== "y";
const invertY = axes !== "x";
const {cellsX, cellsY} = this.grid;
const inverted = this.heights.map((_h: number, i: number) => {
if(!this.heights) return 0;
const x = i % cellsX;
const y = Math.floor(i / cellsX);
const nx = invertX ? cellsX - x - 1 : x;
const ny = invertY ? cellsY - y - 1 : y;
const invertedI = nx + ny * cellsX;
return this.heights[invertedI];
});
this.heights = inverted;
};
addStep(tool: Tool, a2: string, a3: string, a4: string, a5: string): void {
if (tool === "Hill") return this.addHill(a2, a3, a4, a5);
if (tool === "Pit") return this.addPit(a2, a3, a4, a5);
if (tool === "Range") return this.addRange(a2, a3, a4, a5);
if (tool === "Trough") return this.addTrough(a2, a3, a4, a5);
if (tool === "Strait") return this.addStrait(a2, a3);
if (tool === "Mask") return this.mask(+a2);
if (tool === "Invert") return this.invert(+a2, a3);
if (tool === "Add") return this.modify(a3, +a2, 1);
if (tool === "Multiply") return this.modify(a3, 0, +a2);
if (tool === "Smooth") return this.smooth(+a2);
}
async generate(graph: any): Promise<Uint8Array> {
TIME && console.time("defineHeightmap");
const id = (byId("templateInput")! as HTMLInputElement).value;
Math.random = Alea(this.seed);
const isTemplate = id in heightmapTemplates;
const heights = isTemplate ? this.fromTemplate(graph, id) : await this.fromPrecreated(graph, id);
TIME && console.timeEnd("defineHeightmap");
this.clearData();
return heights as Uint8Array;
}
fromTemplate(graph: any, id: string): Uint8Array | null {
const templateString = heightmapTemplates[id]?.template || "";
const steps = templateString.split("\n");
if (!steps.length) throw new Error(`Heightmap template: no steps. Template: ${id}. Steps: ${steps}`);
this.setGraph(graph);
for (const step of steps) {
const elements = step.trim().split(" ");
if (elements.length < 2) throw new Error(`Heightmap template: steps < 2. Template: ${id}. Step: ${elements}`);
this.addStep(...elements as [Tool, string, string, string, string]);
}
return this.heights;
};
private getHeightsFromImageData(imageData: Uint8ClampedArray): void {
if(!this.heights) return;
for (let i = 0; i < this.heights.length; i++) {
const lightness = imageData[i * 4] / 255;
const powered = lightness < 0.2 ? lightness : 0.2 + (lightness - 0.2) ** 0.8;
this.heights[i] = minmax(Math.floor(powered * 100), 0, 100);
}
}
fromPrecreated(graph: any, id: string): Promise<Uint8Array> {
return new Promise(resolve => {
// create canvas where 1px corresponts to a cell
const canvas = document.createElement("canvas");
const ctx = canvas.getContext("2d") as CanvasRenderingContext2D;
const {cellsX, cellsY} = graph;
canvas.width = cellsX;
canvas.height = cellsY;
// load heightmap into image and render to canvas
const img = new Image();
img.src = `./heightmaps/${id}.png`;
img.onload = () => {
if(!ctx) {
throw new Error("Could not get canvas context");
}
if(!this.heights) {
throw new Error("Heights array is not initialized");
}
ctx.drawImage(img, 0, 0, cellsX, cellsY);
const imageData = ctx.getImageData(0, 0, cellsX, cellsY);
this.setGraph(graph);
this.getHeightsFromImageData(imageData.data);
canvas.remove();
img.remove();
resolve(this.heights);
};
});
};
getHeights() {
return this.heights;
}
}
window.HeightmapGenerator = new HeightmapGenerator();

2
src/modules/index.ts Normal file
View file

@ -0,0 +1,2 @@
import "./voronoi";
import "./heightmap-generator";

View file

@ -1,4 +1,8 @@
class Voronoi {
import Delaunator from "delaunator";
export type Vertices = { p: Point[], v: number[][], c: number[][] };
export type Cells = { v: number[][], c: number[][], b: number[], i: Uint32Array<ArrayBufferLike> } ;
export type Point = [number, number];
/**
* Creates a Voronoi diagram from the given Delaunator, a list of points, and the number of points. The Voronoi diagram is constructed using (I think) the {@link https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm |Bowyer-Watson Algorithm}
* The {@link https://github.com/mapbox/delaunator/ |Delaunator} library uses {@link https://en.wikipedia.org/wiki/Doubly_connected_edge_list |half-edges} to represent the relationship between points and triangles.
@ -6,12 +10,18 @@ class Voronoi {
* @param {[number, number][]} points A list of coordinates.
* @param {number} pointsN The number of points.
*/
constructor(delaunay, points, pointsN) {
export class Voronoi {
delaunay: Delaunator<Float64Array<ArrayBufferLike>>
points: Point[];
pointsN: number;
cells: Cells = { v: [], c: [], b: [], i: new Uint32Array() }; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell, i = cell indexes;
vertices: Vertices = { p: [], v: [], c: [] }; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells
constructor(delaunay: Delaunator<Float64Array<ArrayBufferLike>>, points: Point[], pointsN: number) {
this.delaunay = delaunay;
this.points = points;
this.pointsN = pointsN;
this.cells = { v: [], c: [], b: [] }; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell
this.vertices = { p: [], v: [], c: [] }; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells
this.vertices
// Half-edges are the indices into the delaunator outputs:
// delaunay.triangles[e] gives the point ID where the half-edge starts
@ -40,18 +50,18 @@ class Voronoi {
* @param {number} t The index of the triangle
* @returns {[number, number, number]} The IDs of the points comprising the given triangle.
*/
pointsOfTriangle(t) {
return this.edgesOfTriangle(t).map(edge => this.delaunay.triangles[edge]);
private pointsOfTriangle(triangleIndex: number): [number, number, number] {
return this.edgesOfTriangle(triangleIndex).map(edge => this.delaunay.triangles[edge]) as [number, number, number];
}
/**
* Identifies what triangles are adjacent to the given triangle. Taken from {@link https://mapbox.github.io/delaunator/#triangle-to-triangles| the Delaunator docs.}
* @param {number} t The index of the triangle
* @param {number} triangleIndex The index of the triangle
* @returns {number[]} The indices of the triangles that share half-edges with this triangle.
*/
trianglesAdjacentToTriangle(t) {
private trianglesAdjacentToTriangle(triangleIndex: number): number[] {
let triangles = [];
for (let edge of this.edgesOfTriangle(t)) {
for (let edge of this.edgesOfTriangle(triangleIndex)) {
let opposite = this.delaunay.halfedges[edge];
triangles.push(this.triangleOfEdge(opposite));
}
@ -61,9 +71,9 @@ class Voronoi {
/**
* Gets the indices of all the incoming and outgoing half-edges that touch the given point. Taken from {@link https://mapbox.github.io/delaunator/#point-to-edges| the Delaunator docs.}
* @param {number} start The index of an incoming half-edge that leads to the desired point
* @returns {number[]} The indices of all half-edges (incoming or outgoing) that touch the point.
* @returns {[number, number, number]} The indices of all half-edges (incoming or outgoing) that touch the point.
*/
edgesAroundPoint(start) {
private edgesAroundPoint(start: number): [number, number, number] {
const result = [];
let incoming = start;
do {
@ -71,46 +81,46 @@ class Voronoi {
const outgoing = this.nextHalfedge(incoming);
incoming = this.delaunay.halfedges[outgoing];
} while (incoming !== -1 && incoming !== start && result.length < 20);
return result;
return result as [number, number, number];
}
/**
* Returns the center of the triangle located at the given index.
* @param {number} t The index of the triangle
* @returns {[number, number]}
* @param {number} triangleIndex The index of the triangle
* @returns {[number, number]} The coordinates of the triangle's circumcenter.
*/
triangleCenter(t) {
let vertices = this.pointsOfTriangle(t).map(p => this.points[p]);
private triangleCenter(triangleIndex: number): Point {
let vertices = this.pointsOfTriangle(triangleIndex).map(p => this.points[p]);
return this.circumcenter(vertices[0], vertices[1], vertices[2]);
}
/**
* Retrieves all of the half-edges for a specific triangle `t`. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.}
* @param {number} t The index of the triangle
* Retrieves all of the half-edges for a specific triangle `triangleIndex`. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.}
* @param {number} triangleIndex The index of the triangle
* @returns {[number, number, number]} The edges of the triangle.
*/
edgesOfTriangle(t) { return [3 * t, 3 * t + 1, 3 * t + 2]; }
private edgesOfTriangle(triangleIndex: number): [number, number, number] { return [3 * triangleIndex, 3 * triangleIndex + 1, 3 * triangleIndex + 2]; }
/**
* Enables lookup of a triangle, given one of the half-edges of that triangle. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.}
* @param {number} e The index of the edge
* @returns {number} The index of the triangle
*/
triangleOfEdge(e) { return Math.floor(e / 3); }
private triangleOfEdge(e: number): number { return Math.floor(e / 3); }
/**
* Moves to the next half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.}
* @param {number} e The index of the current half edge
* @returns {number} The index of the next half edge
*/
nextHalfedge(e) { return (e % 3 === 2) ? e - 2 : e + 1; }
private nextHalfedge(e: number): number { return (e % 3 === 2) ? e - 2 : e + 1; }
/**
* Moves to the previous half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.}
* @param {number} e The index of the current half edge
* @returns {number} The index of the previous half edge
*/
prevHalfedge(e) { return (e % 3 === 0) ? e + 2 : e - 1; }
// private prevHalfedge(e: number): number { return (e % 3 === 0) ? e + 2 : e - 1; }
/**
* Finds the circumcenter of the triangle identified by points a, b, and c. Taken from {@link https://en.wikipedia.org/wiki/Circumscribed_circle#Circumcenter_coordinates| Wikipedia}
@ -119,7 +129,7 @@ class Voronoi {
* @param {[number, number]} c The coordinates of the third point of the triangle
* @return {[number, number]} The coordinates of the circumcenter of the triangle.
*/
circumcenter(a, b, c) {
private circumcenter(a: Point, b: Point, c: Point): Point {
const [ax, ay] = a;
const [bx, by] = b;
const [cx, cy] = c;
@ -133,5 +143,3 @@ class Voronoi {
];
}
}
window.Voronoi = Voronoi;

View file

@ -78,7 +78,7 @@ export const getTypedArray = (maxValue: number) => {
* @param {Array} [options.from] - An optional array to create the typed array from
* @returns The created typed array
*/
export const createTypedArray = ({maxValue, length, from}: {maxValue: number; length: number; from?: ArrayLike<number>}) => {
export const createTypedArray = ({maxValue, length, from}: {maxValue: number; length: number; from?: ArrayLike<number>}): Uint8Array | Uint16Array | Uint32Array => {
const typedArray = getTypedArray(maxValue);
if (!from) return new typedArray(length);
return typedArray.from(from);

View file

@ -4,6 +4,7 @@ import { color } from "d3";
import { byId } from "./shorthands";
import { rn } from "./numberUtils";
import { createTypedArray } from "./arrayUtils";
import { Cells, Vertices, Voronoi, Point } from "../modules/voronoi";
/**
* Get boundary points on a regular square grid
@ -12,14 +13,14 @@ import { createTypedArray } from "./arrayUtils";
* @param {number} spacing - The spacing between points
* @returns {Array} - An array of boundary points
*/
const getBoundaryPoints = (width: number, height: number, spacing: number) => {
const getBoundaryPoints = (width: number, height: number, spacing: number): Point[] => {
const offset = rn(-1 * spacing);
const bSpacing = spacing * 2;
const w = width - offset * 2;
const h = height - offset * 2;
const numberX = Math.ceil(w / bSpacing) - 1;
const numberY = Math.ceil(h / bSpacing) - 1;
const points = [];
const points: Point[] = [];
for (let i = 0.5; i < numberX; i++) {
let x = Math.ceil((w * i) / numberX + offset);
@ -41,13 +42,13 @@ const getBoundaryPoints = (width: number, height: number, spacing: number) => {
* @param {number} spacing - The spacing between points
* @returns {Array} - An array of jittered grid points
*/
const getJitteredGrid = (width: number, height: number, spacing: number): number[][] => {
const getJitteredGrid = (width: number, height: number, spacing: number): Point[] => {
const radius = spacing / 2; // square radius
const jittering = radius * 0.9; // max deviation
const doubleJittering = jittering * 2;
const jitter = () => Math.random() * doubleJittering - jittering;
let points: number[][] = [];
let points: Point[] = [];
for (let y = radius; y < height; y += spacing) {
for (let x = radius; x < width; x += spacing) {
const xj = Math.min(rn(x + jitter(), 2), width);
@ -64,18 +65,18 @@ const getJitteredGrid = (width: number, height: number, spacing: number): number
* @param {number} graphHeight - The height of the graph
* @returns {Object} - An object containing spacing, cellsDesired, boundary points, grid points, cellsX, and cellsY
*/
const placePoints = (graphWidth: number, graphHeight: number) => {
window.TIME && console.time("placePoints");
const placePoints = (graphWidth: number, graphHeight: number): {spacing: number, cellsDesired: number, boundary: Point[], points: Point[], cellsX: number, cellsY: number} => {
TIME && console.time("placePoints");
const cellsDesired = +(byId("pointsInput")?.dataset.cells || 0);
const spacing = rn(Math.sqrt((graphWidth * graphHeight) / cellsDesired), 2); // spacing between points before jirrering
const spacing = rn(Math.sqrt((graphWidth * graphHeight) / cellsDesired), 2); // spacing between points before jittering
const boundary = getBoundaryPoints(graphWidth, graphHeight, spacing);
const points = getJitteredGrid(graphWidth, graphHeight, spacing); // points of jittered square grid
const cellsX = Math.floor((graphWidth + 0.5 * spacing - 1e-10) / spacing);
const cellsY = Math.floor((graphHeight + 0.5 * spacing - 1e-10) / spacing);
window.TIME && console.timeEnd("placePoints");
const cellCountX = Math.floor((graphWidth + 0.5 * spacing - 1e-10) / spacing); // number of cells in x direction
const cellCountY = Math.floor((graphHeight + 0.5 * spacing - 1e-10) / spacing); // number of cells in y direction
TIME && console.timeEnd("placePoints");
return {spacing, cellsDesired, boundary, points, cellsX, cellsY};
return {spacing, cellsDesired, boundary, points, cellsX: cellCountX, cellsY: cellCountY};
}
@ -100,11 +101,22 @@ export const shouldRegenerateGrid = (grid: any, expectedSeed: number, graphWidth
return grid.spacing !== newSpacing || grid.cellsX !== newCellsX || grid.cellsY !== newCellsY;
}
interface Grid {
spacing: number;
cellsDesired: number;
boundary: Point[];
points: Point[];
cellsX: number;
cellsY: number;
seed: string | number;
cells: Cells;
vertices: Vertices;
}
/**
* Generates a Voronoi grid based on jittered grid points
* @returns {Object} - The generated grid object containing spacing, cellsDesired, boundary, points, cellsX, cellsY, cells, vertices, and seed
*/
export const generateGrid = (seed: string, graphWidth: number, graphHeight: number) => {
export const generateGrid = (seed: string, graphWidth: number, graphHeight: number): Grid => {
Math.random = Alea(seed); // reset PRNG
const {spacing, cellsDesired, boundary, points, cellsX, cellsY} = placePoints(graphWidth, graphHeight);
const {cells, vertices} = calculateVoronoi(points, boundary);
@ -117,19 +129,19 @@ export const generateGrid = (seed: string, graphWidth: number, graphHeight: numb
* @param {Array} boundary - The boundary points to clip the Voronoi cells
* @returns {Object} - An object containing Voronoi cells and vertices
*/
export const calculateVoronoi = (points: number[][], boundary: number[][]) => {
window.TIME && console.time("calculateDelaunay");
export const calculateVoronoi = (points: Point[], boundary: Point[]): {cells: Cells, vertices: Vertices} => {
TIME && console.time("calculateDelaunay");
const allPoints = points.concat(boundary);
const delaunay = Delaunator.from(allPoints);
window.TIME && console.timeEnd("calculateDelaunay");
TIME && console.timeEnd("calculateDelaunay");
window.TIME && console.time("calculateVoronoi");
const voronoi = new window.Voronoi(delaunay, allPoints, points.length);
TIME && console.time("calculateVoronoi");
const voronoi = new Voronoi(delaunay, allPoints, points.length);
const cells = voronoi.cells;
cells.i = createTypedArray({maxValue: points.length, length: points.length}).map((_, i) => i); // array of indexes
cells.i = createTypedArray({maxValue: points.length, length: points.length}).map((_, i) => i) as Uint32Array<ArrayBufferLike>; // array of indexes
const vertices = voronoi.vertices;
window.TIME && console.timeEnd("calculateVoronoi");
TIME && console.timeEnd("calculateVoronoi");
return {cells, vertices};
}
@ -432,9 +444,8 @@ export const drawHeights = ({heights, width, height, scheme, renderOcean}: {heig
}
declare global {
var TIME: boolean;
interface Window {
TIME: boolean;
Voronoi: any;
shouldRegenerateGrid: typeof shouldRegenerateGrid;
generateGrid: typeof generateGrid;

View file

@ -144,3 +144,93 @@ window.drawPolygons = (data: any[]) => drawPolygons(data, (window as any).terrs,
window.drawRouteConnections = () => drawRouteConnections((window as any).packedGraph);
window.drawPoint = drawPoint;
window.drawPath = drawPath;
export {
rn,
lim,
minmax,
normalize,
lerp,
isVowel,
trimVowels,
getAdjective,
nth,
abbreviate,
list,
last,
unique,
deepCopy,
getTypedArray,
createTypedArray,
TYPED_ARRAY_MAX_VALUES,
rand,
P,
each,
gauss,
Pint,
biased,
generateSeed,
getNumberInRange,
ra,
rw,
convertTemperature,
si,
getIntegerFromSI,
toHEX,
getColors,
getRandomColor,
getMixedColor,
C_12,
getComposedPath,
getNextId,
rollups,
distanceSquared,
getIsolines,
getPolesOfInaccessibility,
connectVertices,
findPath,
getVertexPath,
round,
capitalize,
splitInTwo,
parseTransform,
isValidJSON,
safeParseJSON,
sanitizeId,
byId,
shouldRegenerateGrid,
generateGrid,
findGridAll,
findGridCell,
findClosestCell,
calculateVoronoi,
findAllCellsInRadius,
getPackPolygon,
getGridPolygon,
poissonDiscSampler,
isLand,
isWater,
findAllInQuadtree,
drawHeights,
clipPoly,
getSegmentId,
debounce,
throttle,
parseError,
getBase64,
openURL,
wiki,
link,
isCtrlClick,
generateDate,
getLongitude,
getLatitude,
getCoordinates,
initializePrompt,
drawCellsValue,
drawPolygons,
drawRouteConnections,
drawPoint,
drawPath
}