refactor: river generation continue

This commit is contained in:
max 2022-07-20 01:21:55 +03:00
parent 4e65616dbc
commit cd86c61b79
6 changed files with 196 additions and 131 deletions

View file

@ -7641,7 +7641,7 @@
<script type="module" src="/src/modules/heightmap-generator.js"></script>
<script type="module" src="/src/modules/ocean-layers.js"></script>
<script type="module" src="/src/modules/river-generator.js"></script>
<script type="module" src="/src/modules/river-generator.ts"></script>
<script type="module" src="/src/modules/lakes.ts"></script>
<script type="module" src="/src/modules/names-generator.js"></script>
<script type="module" src="/src/modules/biomes.js"></script>

View file

@ -7,34 +7,42 @@ import {aleaPRNG} from "scripts/aleaPRNG";
import {getInputNumber, getInputValue} from "utils/nodeUtils";
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
import {byId} from "utils/shorthands";
import {getRealHeight} from "utils/unitUtils";
window.Lakes = (function () {
const setClimateData = function (h: Uint8Array, pack: IPack, grid: IGrid) {
const cells = pack.cells;
const lakeOutCells = new Uint16Array(cells.i.length);
const setClimateData = function (
heights: Uint8Array,
lakes: IPackFeatureLake[],
gridReference: IPack["cells"]["g"],
precipitation: IGrid["cells"]["prec"],
temperature: IGrid["cells"]["temp"]
) {
const lakeOutCells = new Uint16Array(gridReference.length);
pack.features.forEach(f => {
if (f.type !== "lake") return;
for (const lake of lakes) {
const {firstCell, shoreline} = lake;
// default flux: sum of precipitation around lake
f.flux = f.shoreline.reduce((acc, c) => acc + grid.cells.prec[cells.g[c]], 0);
lake.flux = shoreline.reduce((acc, cellId) => acc + precipitation[gridReference[cellId]], 0);
// temperature and evaporation to detect closed lakes
f.temp =
f.cells < 6
? grid.cells.temp[cells.g[f.firstCell]]
: rn(d3.mean(f.shoreline.map(c => grid.cells.temp[cells.g[c]])), 1);
const height = (f.height - 18) ** heightExponentInput.value; // height in meters
const evaporation = ((700 * (f.temp + 0.006 * height)) / 50 + 75) / (80 - f.temp); // based on Penman formula, [1-11]
f.evaporation = rn(evaporation * f.cells);
lake.temp =
lake.cells < 6
? temperature[gridReference[firstCell]]
: rn(d3.mean(shoreline.map(cellId => temperature[gridReference[cellId]]))!, 1);
const height = getRealHeight(lake.height); // height in meters
const evaporation = ((700 * (lake.temp + 0.006 * height)) / 50 + 75) / (80 - lake.temp); // based on Penman formula, [1-11]
lake.evaporation = rn(evaporation * lake.cells);
// no outlet for lakes in depressed areas
if (f.closed) return;
// if (lake.closed) continue;
// lake outlet cell
f.outCell = f.shoreline[d3.scan(f.shoreline, (a, b) => h[a] - h[b])];
lakeOutCells[f.outCell] = f.i;
});
const outCell = shoreline[d3.scan(shoreline, (a, b) => heights[a] - heights[b])!];
lake.outCell = outCell;
lakeOutCells[lake.outCell] = lake.i;
}
return lakeOutCells;
};

View file

@ -6,19 +6,22 @@ import {rn} from "utils/numberUtils";
import {round} from "utils/stringUtils";
import {rw, each} from "utils/probabilityUtils";
import {aleaPRNG} from "scripts/aleaPRNG";
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
import {DISTANCE_FIELD, MAX_HEIGHT, MIN_LAND_HEIGHT} from "config/generation";
import {getInputNumber} from "utils/nodeUtils";
import {pick} from "utils/functionUtils";
import {byId} from "utils/shorthands";
const {Lakes} = window;
const {LAND_COAST} = DISTANCE_FIELD;
interface IRiverPackData {
cells: Pick<IPack["cells"], "i" | "h" | "c" | "t">;
features: TPackFeatures;
}
window.Rivers = (function () {
const generate = function (grid: IGrid, {cells, features}: IRiverPackData, allowErosion = true) {
const generate = function (
precipitation: IGrid["cells"]["prec"],
temperature: IGrid["cells"]["temp"],
cells: Pick<IPack["cells"], "i" | "c" | "b" | "g" | "t" | "h" | "f" | "haven">,
features: TPackFeatures,
allowErosion = true
) {
TIME && console.time("generateRivers");
Math.random = aleaPRNG(seed);
@ -27,23 +30,26 @@ window.Rivers = (function () {
const riverParents = {};
const cellsNumber = cells.i.length;
const flux = new Uint16Array(cellsNumber);
const riverIds = new Uint16Array(cellsNumber);
const confluence = new Uint8Array(cellsNumber);
let nextRiverId = 1; // starts with 1
const alteredHeights = alterHeights({h: cells.h, c: cells.c, t: cells.t});
const gradientHeights = alterHeights({h: cells.h, c: cells.c, t: cells.t});
const [currentCellHeights, currentLakeHeights] = resolveDepressions(
pick(cells, "i", "c", "b", "f"),
features,
gradientHeights
);
resolveDepressions(pack, alteredHeights);
drainWater();
const flux = drainWater();
defineRivers();
calculateConfluenceFlux();
Lakes.cleanupLakeData(pack);
if (allowErosion) {
cells.h = Uint8Array.from(alteredHeights); // apply gradient
cells.h = Uint8Array.from(currentCellHeights); // mutate heightmap
downcutRivers(); // downcut river beds
}
@ -51,21 +57,27 @@ window.Rivers = (function () {
function drainWater() {
const MIN_FLUX_TO_FORM_RIVER = 30;
const cellsNumberModifier = (pointsInput.dataset.cells / 10000) ** 0.25;
const points = Number(byId("pointsInput")?.dataset.cells);
const cellsNumberModifier = (points / 10000) ** 0.25;
const prec = grid.cells.prec;
const land = cells.i.filter(i => alteredHeights[i] >= 20).sort((a, b) => alteredHeights[b] - alteredHeights[a]);
const lakeOutCells = Lakes.setClimateData(alteredHeights, pack, grid);
const land = cells.i.filter(i => currentCellHeights[i] >= MIN_LAND_HEIGHT);
land.sort((a, b) => currentCellHeights[b] - currentCellHeights[a]);
land.forEach(function (i) {
flux[i] += prec[cells.g[i]] / cellsNumberModifier; // add flux from precipitation
const flux = new Uint16Array(cellsNumber);
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
const lakeOutCells = Lakes.setClimateData(currentCellHeights, lakes, cells.g, precipitation, temperature);
land.forEach(cellId => {
flux[cellId] += precipitation[cells.g[cellId]] / cellsNumberModifier;
// create lake outlet if lake is not in deep depression and flux > evaporation
const lakes = lakeOutCells[i]
? features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation)
const openLakes = lakeOutCells[cellId]
? lakes.filter(({outCell, flux = 0, evaporation = 0}) => cellId === outCell && flux > evaporation)
: [];
for (const lake of lakes) {
const lakeCell = cells.c[i].find(c => alteredHeights[c] < 20 && cells.f[c] === lake.i);
for (const lake of openLakes) {
const lakeCell = cells.c[cellId].find(c => currentCellHeights[c] < MIN_LAND_HEIGHT && cells.f[c] === lake.i);
flux[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
// allow chain lakes to retain identity
@ -83,12 +95,12 @@ window.Rivers = (function () {
}
lake.outlet = riverIds[lakeCell];
flowDown(i, flux[lakeCell], lake.outlet);
flowDown(cellId, flux[lakeCell], lake.outlet);
}
// assign all tributary rivers to outlet basin
const outlet = lakes[0]?.outlet;
for (const lake of lakes) {
const outlet = openLakes[0]?.outlet;
for (const lake of openLakes) {
if (!Array.isArray(lake.inlets)) continue;
for (const inlet of lake.inlets) {
riverParents[inlet] = outlet;
@ -96,21 +108,21 @@ window.Rivers = (function () {
}
// near-border cell: pour water out of the screen
if (cells.b[i] && riverIds[i]) return addCellToRiver(-1, riverIds[i]);
if (cells.b[cellId] && riverIds[cellId]) return addCellToRiver(-1, riverIds[cellId]);
// downhill cell (make sure it's not in the source lake)
let min = null;
if (lakeOutCells[i]) {
const filtered = cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c]));
if (lakeOutCells[cellId]) {
const filtered = cells.c[cellId].filter(c => !openLakes.map(lake => lake.i).includes(cells.f[c]));
min = filtered.sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
} else if (cells.haven[i]) {
min = cells.haven[i];
} else if (cells.haven[cellId]) {
min = cells.haven[cellId];
} else {
min = cells.c[i].sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
min = cells.c[cellId].sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
}
// cells is depressed
if (alteredHeights[i] <= alteredHeights[min]) return;
if (alteredHeights[cellId] <= alteredHeights[min]) return;
// debug
// .append("line")
@ -121,21 +133,23 @@ window.Rivers = (function () {
// .attr("stroke", "#333")
// .attr("stroke-width", 0.2);
if (flux[i] < MIN_FLUX_TO_FORM_RIVER) {
if (flux[cellId] < MIN_FLUX_TO_FORM_RIVER) {
// flux is too small to operate as a river
if (alteredHeights[min] >= 20) flux[min] += flux[i];
if (alteredHeights[min] >= 20) flux[min] += flux[cellId];
return;
}
// proclaim a new river
if (!riverIds[i]) {
riverIds[i] = nextRiverId;
addCellToRiver(i, nextRiverId);
if (!riverIds[cellId]) {
riverIds[cellId] = nextRiverId;
addCellToRiver(cellId, nextRiverId);
nextRiverId++;
}
flowDown(min, flux[i], riverIds[i]);
flowDown(min, flux[cellId], riverIds[cellId]);
});
return flux;
}
function addCellToRiver(cellId: number, riverId: number) {
@ -265,48 +279,122 @@ window.Rivers = (function () {
};
// depression filling algorithm (for a correct water flux modeling)
const resolveDepressions = function (pack, h) {
const {cells, features} = pack;
const maxIterations = getInputNumber("resolveDepressionsStepsOutput");
const checkLakeMaxIteration = maxIterations * 0.85;
const elevateLakeMaxIteration = maxIterations * 0.75;
const resolveDepressions = function (
cells: Pick<IPack["cells"], "i" | "c" | "b" | "f">,
features: TPackFeatures,
heights: number[]
): [number[], Dict<number>] {
const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
const height = i => features[cells.f[i]].height || h[i]; // height of lake or specific cell
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
const lakes = features.filter(feature => feature.type === "lake");
const canBePoured = () => {
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
const LAND_ELEVATION_INCREMENT = 0.1;
const LAKE_ELEVATION_INCREMENT = 0.2;
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
const lakeData = lakes.map(feature => {
const minShoreHeight = d3.min(feature.shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT;
const minHeightCell =
feature.shoreline.find(cellId => heights[cellId] === minShoreHeight) || feature.shoreline[0];
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
if (ELEVATION_LIMIT === 80) return {...feature, closed: false};
const currentCellHeights = Array.from(heights);
const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
// check if lake can be open (not in deep depression)
let deep = true;
const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
const threshold = feature.height + ELEVATION_LIMIT;
const queue = [minHeightCell];
const drainableLakes = checkLakesDrainability();
const landCells = cells.i.filter(i => heights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
landCells.sort((a, b) => heights[a] - heights[b]); // lowest cells go first
const depressions: number[] = [];
for (let iteration = 0; iteration && depressions.at(-1) && iteration < MAX_INTERATIONS; iteration++) {
let depressionsLeft = 0;
// elevate potentially drainable lakes
if (iteration < checkLakeMaxIteration) {
for (const lake of lakes) {
if (drainableLakes[lake.i] !== true) continue;
const minShoreHeight = getMinHeight(lake.shoreline);
if (minShoreHeight >= MAX_HEIGHT || lake.height > minShoreHeight) continue;
if (iteration > elevateLakeMaxIteration) {
for (const shoreCellId of lake.shoreline) {
// reset heights
currentCellHeights[shoreCellId] = heights[shoreCellId];
currentLakeHeights[lake.i] = lake.height;
}
drainableLakes[lake.i] = false;
continue;
}
currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
depressionsLeft++;
}
}
for (const cellId of landCells) {
const minHeight = getMinHeight(cells.c[cellId]);
if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
depressionsLeft++;
}
depressions.push(depressionsLeft);
// check depression resolving progress
if (depressions.length > 5) {
const depressionsInitial = depressions.at(0) || 0;
const depressiosRecently = depressions.at(-6) || 0;
const isProgressingOverall = depressionsInitial < depressionsLeft;
if (!isProgressingOverall) return [heights, Object.fromEntries(lakes.map(({i, height}) => [i, height]))];
const isProgressingRecently = depressiosRecently < depressionsLeft;
if (!isProgressingRecently) return [currentCellHeights, currentLakeHeights];
}
}
// define lakes that potentially can be open (drained into another water body)
function checkLakesDrainability() {
const canBeDrained: Dict<boolean> = {}; // all false by default
const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
for (const lake of lakes) {
if (drainAllLakes) {
canBeDrained[lake.i] = true;
continue;
}
canBeDrained[lake.i] = false;
const minShoreHeight = getMinHeight(lake.shoreline);
const minHeightShoreCell =
lake.shoreline.find(cellId => heights[cellId] === minShoreHeight) || lake.shoreline[0];
const queue = [minHeightShoreCell];
const checked = [];
checked[minHeightCell] = true;
checked[minHeightShoreCell] = true;
const breakableHeight = lake.height + ELEVATION_LIMIT;
// check if elevated lake can potentially pour to another water body
while (deep && queue.length) {
loopCellsAroundLake: while (queue.length) {
const cellId = queue.pop()!;
for (const neibCellId of cells.c[cellId]) {
if (checked[neibCellId]) continue;
if (heights[neibCellId] >= threshold) continue;
if (heights[neibCellId] >= breakableHeight) continue;
if (heights[neibCellId] < MIN_LAND_HEIGHT) {
const waterFeatureMet = features[cells.f[neibCellId]];
const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
if ((waterFeatureMet && waterFeatureMet.type === "ocean") || feature.height > waterFeatureMet.height) {
deep = false;
break;
if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
canBeDrained[lake.i] = true;
break loopCellsAroundLake;
}
}
@ -314,58 +402,14 @@ window.Rivers = (function () {
queue.push(neibCellId);
}
}
return {...feature, closed: deep};
});
};
const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells
land.sort((a, b) => h[a] - h[b]); // lowest cells go first
const progress = [];
let depressions = Infinity;
let prevDepressions = null;
for (let iteration = 0; depressions && iteration < maxIterations; iteration++) {
if (progress.length > 5 && d3.sum(progress) > 0) {
// bad progress, abort and set heights back
h = alterHeights(pack.cells);
depressions = progress[0];
break;
}
depressions = 0;
if (iteration < checkLakeMaxIteration) {
for (const l of lakes) {
if (l.closed) continue;
const minHeight = d3.min(l.shoreline.map(s => h[s]));
if (minHeight >= 100 || l.height > minHeight) continue;
if (iteration > elevateLakeMaxIteration) {
l.shoreline.forEach(i => (h[i] = cells.h[i]));
l.height = d3.min(l.shoreline.map(s => h[s])) - 1;
l.closed = true;
continue;
}
depressions++;
l.height = minHeight + 0.2;
}
}
for (const i of land) {
const minHeight = d3.min(cells.c[i].map(c => height(c)));
if (minHeight >= 100 || h[i] > minHeight) continue;
depressions++;
h[i] = minHeight + 0.1;
}
prevDepressions !== null && progress.push(depressions - prevDepressions);
prevDepressions = depressions;
return canBeDrained;
}
depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`);
return [currentCellHeights, currentLakeHeights];
};
// add points at 1/3 and 2/3 of a line between adjacents river cells

View file

@ -24,8 +24,13 @@ export function createPack(grid: IGrid): IPack {
const markup = markupPackFeatures(grid, vertices, pick(cells, "v", "c", "b", "p", "h"));
const {features, featureIds, distanceField, haven, harbor} = markup;
const riverCells = {...cells, f: featureIds, t: distanceField, haven};
Rivers.generate(grid, {cells: riverCells, features}, true);
Rivers.generate(
grid.cells.prec,
grid.cells.temp,
pick({...cells, f: featureIds, t: distanceField, haven}, "i", "c", "b", "g", "t", "h", "f", "haven"),
features,
true
);
// Lakes.defineGroup(newPack);
// Biomes.define(newPack, grid);

View file

@ -27,6 +27,10 @@ interface IPackFeatureLake extends IPackFeatureBase {
name: string;
shoreline: number[];
height: number;
flux?: number;
temp?: number;
evaporation?: number;
outCell?: number;
}
type TPackFeature = IPackFeatureOcean | IPackFeatureIsland | IPackFeatureLake;

View file

@ -68,6 +68,10 @@ export function convertTemperature(temp: number) {
// Elevation
// ***
export function getRealHeight(height: number) {
return (height - 18) ** getInputNumber("heightExponentInput");
}
// get user-friendly (real-world) height value from coordinates
export function getFriendlyHeight([x, y]: TPoint) {
const packH = pack.cells.h[findCell(x, y)];