mirror of
https://github.com/Azgaar/Fantasy-Map-Generator.git
synced 2025-12-17 09:41:24 +01:00
refactor: river generation continue
This commit is contained in:
parent
4e65616dbc
commit
cd86c61b79
6 changed files with 196 additions and 131 deletions
|
|
@ -7641,7 +7641,7 @@
|
|||
|
||||
<script type="module" src="/src/modules/heightmap-generator.js"></script>
|
||||
<script type="module" src="/src/modules/ocean-layers.js"></script>
|
||||
<script type="module" src="/src/modules/river-generator.js"></script>
|
||||
<script type="module" src="/src/modules/river-generator.ts"></script>
|
||||
<script type="module" src="/src/modules/lakes.ts"></script>
|
||||
<script type="module" src="/src/modules/names-generator.js"></script>
|
||||
<script type="module" src="/src/modules/biomes.js"></script>
|
||||
|
|
|
|||
|
|
@ -7,34 +7,42 @@ import {aleaPRNG} from "scripts/aleaPRNG";
|
|||
import {getInputNumber, getInputValue} from "utils/nodeUtils";
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {byId} from "utils/shorthands";
|
||||
import {getRealHeight} from "utils/unitUtils";
|
||||
|
||||
window.Lakes = (function () {
|
||||
const setClimateData = function (h: Uint8Array, pack: IPack, grid: IGrid) {
|
||||
const cells = pack.cells;
|
||||
const lakeOutCells = new Uint16Array(cells.i.length);
|
||||
const setClimateData = function (
|
||||
heights: Uint8Array,
|
||||
lakes: IPackFeatureLake[],
|
||||
gridReference: IPack["cells"]["g"],
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"]
|
||||
) {
|
||||
const lakeOutCells = new Uint16Array(gridReference.length);
|
||||
|
||||
pack.features.forEach(f => {
|
||||
if (f.type !== "lake") return;
|
||||
for (const lake of lakes) {
|
||||
const {firstCell, shoreline} = lake;
|
||||
|
||||
// default flux: sum of precipitation around lake
|
||||
f.flux = f.shoreline.reduce((acc, c) => acc + grid.cells.prec[cells.g[c]], 0);
|
||||
lake.flux = shoreline.reduce((acc, cellId) => acc + precipitation[gridReference[cellId]], 0);
|
||||
|
||||
// temperature and evaporation to detect closed lakes
|
||||
f.temp =
|
||||
f.cells < 6
|
||||
? grid.cells.temp[cells.g[f.firstCell]]
|
||||
: rn(d3.mean(f.shoreline.map(c => grid.cells.temp[cells.g[c]])), 1);
|
||||
const height = (f.height - 18) ** heightExponentInput.value; // height in meters
|
||||
const evaporation = ((700 * (f.temp + 0.006 * height)) / 50 + 75) / (80 - f.temp); // based on Penman formula, [1-11]
|
||||
f.evaporation = rn(evaporation * f.cells);
|
||||
lake.temp =
|
||||
lake.cells < 6
|
||||
? temperature[gridReference[firstCell]]
|
||||
: rn(d3.mean(shoreline.map(cellId => temperature[gridReference[cellId]]))!, 1);
|
||||
|
||||
const height = getRealHeight(lake.height); // height in meters
|
||||
const evaporation = ((700 * (lake.temp + 0.006 * height)) / 50 + 75) / (80 - lake.temp); // based on Penman formula, [1-11]
|
||||
lake.evaporation = rn(evaporation * lake.cells);
|
||||
|
||||
// no outlet for lakes in depressed areas
|
||||
if (f.closed) return;
|
||||
// if (lake.closed) continue;
|
||||
|
||||
// lake outlet cell
|
||||
f.outCell = f.shoreline[d3.scan(f.shoreline, (a, b) => h[a] - h[b])];
|
||||
lakeOutCells[f.outCell] = f.i;
|
||||
});
|
||||
const outCell = shoreline[d3.scan(shoreline, (a, b) => heights[a] - heights[b])!];
|
||||
lake.outCell = outCell;
|
||||
lakeOutCells[lake.outCell] = lake.i;
|
||||
}
|
||||
|
||||
return lakeOutCells;
|
||||
};
|
||||
|
|
|
|||
|
|
@ -6,19 +6,22 @@ import {rn} from "utils/numberUtils";
|
|||
import {round} from "utils/stringUtils";
|
||||
import {rw, each} from "utils/probabilityUtils";
|
||||
import {aleaPRNG} from "scripts/aleaPRNG";
|
||||
import {DISTANCE_FIELD, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {DISTANCE_FIELD, MAX_HEIGHT, MIN_LAND_HEIGHT} from "config/generation";
|
||||
import {getInputNumber} from "utils/nodeUtils";
|
||||
import {pick} from "utils/functionUtils";
|
||||
import {byId} from "utils/shorthands";
|
||||
|
||||
const {Lakes} = window;
|
||||
const {LAND_COAST} = DISTANCE_FIELD;
|
||||
|
||||
interface IRiverPackData {
|
||||
cells: Pick<IPack["cells"], "i" | "h" | "c" | "t">;
|
||||
features: TPackFeatures;
|
||||
}
|
||||
|
||||
window.Rivers = (function () {
|
||||
const generate = function (grid: IGrid, {cells, features}: IRiverPackData, allowErosion = true) {
|
||||
const generate = function (
|
||||
precipitation: IGrid["cells"]["prec"],
|
||||
temperature: IGrid["cells"]["temp"],
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "b" | "g" | "t" | "h" | "f" | "haven">,
|
||||
features: TPackFeatures,
|
||||
allowErosion = true
|
||||
) {
|
||||
TIME && console.time("generateRivers");
|
||||
|
||||
Math.random = aleaPRNG(seed);
|
||||
|
|
@ -27,23 +30,26 @@ window.Rivers = (function () {
|
|||
const riverParents = {};
|
||||
|
||||
const cellsNumber = cells.i.length;
|
||||
const flux = new Uint16Array(cellsNumber);
|
||||
const riverIds = new Uint16Array(cellsNumber);
|
||||
const confluence = new Uint8Array(cellsNumber);
|
||||
|
||||
let nextRiverId = 1; // starts with 1
|
||||
|
||||
const alteredHeights = alterHeights({h: cells.h, c: cells.c, t: cells.t});
|
||||
const gradientHeights = alterHeights({h: cells.h, c: cells.c, t: cells.t});
|
||||
const [currentCellHeights, currentLakeHeights] = resolveDepressions(
|
||||
pick(cells, "i", "c", "b", "f"),
|
||||
features,
|
||||
gradientHeights
|
||||
);
|
||||
|
||||
resolveDepressions(pack, alteredHeights);
|
||||
drainWater();
|
||||
const flux = drainWater();
|
||||
defineRivers();
|
||||
|
||||
calculateConfluenceFlux();
|
||||
Lakes.cleanupLakeData(pack);
|
||||
|
||||
if (allowErosion) {
|
||||
cells.h = Uint8Array.from(alteredHeights); // apply gradient
|
||||
cells.h = Uint8Array.from(currentCellHeights); // mutate heightmap
|
||||
downcutRivers(); // downcut river beds
|
||||
}
|
||||
|
||||
|
|
@ -51,21 +57,27 @@ window.Rivers = (function () {
|
|||
|
||||
function drainWater() {
|
||||
const MIN_FLUX_TO_FORM_RIVER = 30;
|
||||
const cellsNumberModifier = (pointsInput.dataset.cells / 10000) ** 0.25;
|
||||
const points = Number(byId("pointsInput")?.dataset.cells);
|
||||
const cellsNumberModifier = (points / 10000) ** 0.25;
|
||||
|
||||
const prec = grid.cells.prec;
|
||||
const land = cells.i.filter(i => alteredHeights[i] >= 20).sort((a, b) => alteredHeights[b] - alteredHeights[a]);
|
||||
const lakeOutCells = Lakes.setClimateData(alteredHeights, pack, grid);
|
||||
const land = cells.i.filter(i => currentCellHeights[i] >= MIN_LAND_HEIGHT);
|
||||
land.sort((a, b) => currentCellHeights[b] - currentCellHeights[a]);
|
||||
|
||||
land.forEach(function (i) {
|
||||
flux[i] += prec[cells.g[i]] / cellsNumberModifier; // add flux from precipitation
|
||||
const flux = new Uint16Array(cellsNumber);
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
const lakeOutCells = Lakes.setClimateData(currentCellHeights, lakes, cells.g, precipitation, temperature);
|
||||
|
||||
land.forEach(cellId => {
|
||||
flux[cellId] += precipitation[cells.g[cellId]] / cellsNumberModifier;
|
||||
|
||||
// create lake outlet if lake is not in deep depression and flux > evaporation
|
||||
const lakes = lakeOutCells[i]
|
||||
? features.filter(feature => i === feature.outCell && feature.flux > feature.evaporation)
|
||||
const openLakes = lakeOutCells[cellId]
|
||||
? lakes.filter(({outCell, flux = 0, evaporation = 0}) => cellId === outCell && flux > evaporation)
|
||||
: [];
|
||||
for (const lake of lakes) {
|
||||
const lakeCell = cells.c[i].find(c => alteredHeights[c] < 20 && cells.f[c] === lake.i);
|
||||
|
||||
for (const lake of openLakes) {
|
||||
const lakeCell = cells.c[cellId].find(c => currentCellHeights[c] < MIN_LAND_HEIGHT && cells.f[c] === lake.i);
|
||||
flux[lakeCell] += Math.max(lake.flux - lake.evaporation, 0); // not evaporated lake water drains to outlet
|
||||
|
||||
// allow chain lakes to retain identity
|
||||
|
|
@ -83,12 +95,12 @@ window.Rivers = (function () {
|
|||
}
|
||||
|
||||
lake.outlet = riverIds[lakeCell];
|
||||
flowDown(i, flux[lakeCell], lake.outlet);
|
||||
flowDown(cellId, flux[lakeCell], lake.outlet);
|
||||
}
|
||||
|
||||
// assign all tributary rivers to outlet basin
|
||||
const outlet = lakes[0]?.outlet;
|
||||
for (const lake of lakes) {
|
||||
const outlet = openLakes[0]?.outlet;
|
||||
for (const lake of openLakes) {
|
||||
if (!Array.isArray(lake.inlets)) continue;
|
||||
for (const inlet of lake.inlets) {
|
||||
riverParents[inlet] = outlet;
|
||||
|
|
@ -96,21 +108,21 @@ window.Rivers = (function () {
|
|||
}
|
||||
|
||||
// near-border cell: pour water out of the screen
|
||||
if (cells.b[i] && riverIds[i]) return addCellToRiver(-1, riverIds[i]);
|
||||
if (cells.b[cellId] && riverIds[cellId]) return addCellToRiver(-1, riverIds[cellId]);
|
||||
|
||||
// downhill cell (make sure it's not in the source lake)
|
||||
let min = null;
|
||||
if (lakeOutCells[i]) {
|
||||
const filtered = cells.c[i].filter(c => !lakes.map(lake => lake.i).includes(cells.f[c]));
|
||||
if (lakeOutCells[cellId]) {
|
||||
const filtered = cells.c[cellId].filter(c => !openLakes.map(lake => lake.i).includes(cells.f[c]));
|
||||
min = filtered.sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
|
||||
} else if (cells.haven[i]) {
|
||||
min = cells.haven[i];
|
||||
} else if (cells.haven[cellId]) {
|
||||
min = cells.haven[cellId];
|
||||
} else {
|
||||
min = cells.c[i].sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
|
||||
min = cells.c[cellId].sort((a, b) => alteredHeights[a] - alteredHeights[b])[0];
|
||||
}
|
||||
|
||||
// cells is depressed
|
||||
if (alteredHeights[i] <= alteredHeights[min]) return;
|
||||
if (alteredHeights[cellId] <= alteredHeights[min]) return;
|
||||
|
||||
// debug
|
||||
// .append("line")
|
||||
|
|
@ -121,21 +133,23 @@ window.Rivers = (function () {
|
|||
// .attr("stroke", "#333")
|
||||
// .attr("stroke-width", 0.2);
|
||||
|
||||
if (flux[i] < MIN_FLUX_TO_FORM_RIVER) {
|
||||
if (flux[cellId] < MIN_FLUX_TO_FORM_RIVER) {
|
||||
// flux is too small to operate as a river
|
||||
if (alteredHeights[min] >= 20) flux[min] += flux[i];
|
||||
if (alteredHeights[min] >= 20) flux[min] += flux[cellId];
|
||||
return;
|
||||
}
|
||||
|
||||
// proclaim a new river
|
||||
if (!riverIds[i]) {
|
||||
riverIds[i] = nextRiverId;
|
||||
addCellToRiver(i, nextRiverId);
|
||||
if (!riverIds[cellId]) {
|
||||
riverIds[cellId] = nextRiverId;
|
||||
addCellToRiver(cellId, nextRiverId);
|
||||
nextRiverId++;
|
||||
}
|
||||
|
||||
flowDown(min, flux[i], riverIds[i]);
|
||||
flowDown(min, flux[cellId], riverIds[cellId]);
|
||||
});
|
||||
|
||||
return flux;
|
||||
}
|
||||
|
||||
function addCellToRiver(cellId: number, riverId: number) {
|
||||
|
|
@ -265,48 +279,122 @@ window.Rivers = (function () {
|
|||
};
|
||||
|
||||
// depression filling algorithm (for a correct water flux modeling)
|
||||
const resolveDepressions = function (pack, h) {
|
||||
const {cells, features} = pack;
|
||||
const maxIterations = getInputNumber("resolveDepressionsStepsOutput");
|
||||
const checkLakeMaxIteration = maxIterations * 0.85;
|
||||
const elevateLakeMaxIteration = maxIterations * 0.75;
|
||||
const resolveDepressions = function (
|
||||
cells: Pick<IPack["cells"], "i" | "c" | "b" | "f">,
|
||||
features: TPackFeatures,
|
||||
heights: number[]
|
||||
): [number[], Dict<number>] {
|
||||
const MAX_INTERATIONS = getInputNumber("resolveDepressionsStepsOutput");
|
||||
const checkLakeMaxIteration = MAX_INTERATIONS * 0.85;
|
||||
const elevateLakeMaxIteration = MAX_INTERATIONS * 0.75;
|
||||
|
||||
const height = i => features[cells.f[i]].height || h[i]; // height of lake or specific cell
|
||||
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
|
||||
|
||||
const lakes = features.filter(feature => feature.type === "lake");
|
||||
const canBePoured = () => {
|
||||
const ELEVATION_LIMIT = getInputNumber("lakeElevationLimitOutput");
|
||||
const LAND_ELEVATION_INCREMENT = 0.1;
|
||||
const LAKE_ELEVATION_INCREMENT = 0.2;
|
||||
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
const lakeData = lakes.map(feature => {
|
||||
const minShoreHeight = d3.min(feature.shoreline.map(cellId => heights[cellId])) || MIN_LAND_HEIGHT;
|
||||
const minHeightCell =
|
||||
feature.shoreline.find(cellId => heights[cellId] === minShoreHeight) || feature.shoreline[0];
|
||||
const lakes = features.filter(feature => feature && feature.type === "lake") as IPackFeatureLake[];
|
||||
lakes.sort((a, b) => a.height - b.height); // lowest lakes go first
|
||||
|
||||
if (ELEVATION_LIMIT === 80) return {...feature, closed: false};
|
||||
const currentCellHeights = Array.from(heights);
|
||||
const currentLakeHeights = Object.fromEntries(lakes.map(({i, height}) => [i, height]));
|
||||
|
||||
// check if lake can be open (not in deep depression)
|
||||
let deep = true;
|
||||
const getHeight = (i: number) => currentLakeHeights[cells.f[i]] || currentCellHeights[i];
|
||||
const getMinHeight = (cellsIds: number[]) => Math.min(...cellsIds.map(getHeight));
|
||||
|
||||
const threshold = feature.height + ELEVATION_LIMIT;
|
||||
const queue = [minHeightCell];
|
||||
const drainableLakes = checkLakesDrainability();
|
||||
|
||||
const landCells = cells.i.filter(i => heights[i] >= MIN_LAND_HEIGHT && !cells.b[i]);
|
||||
landCells.sort((a, b) => heights[a] - heights[b]); // lowest cells go first
|
||||
|
||||
const depressions: number[] = [];
|
||||
|
||||
for (let iteration = 0; iteration && depressions.at(-1) && iteration < MAX_INTERATIONS; iteration++) {
|
||||
let depressionsLeft = 0;
|
||||
|
||||
// elevate potentially drainable lakes
|
||||
if (iteration < checkLakeMaxIteration) {
|
||||
for (const lake of lakes) {
|
||||
if (drainableLakes[lake.i] !== true) continue;
|
||||
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
if (minShoreHeight >= MAX_HEIGHT || lake.height > minShoreHeight) continue;
|
||||
|
||||
if (iteration > elevateLakeMaxIteration) {
|
||||
for (const shoreCellId of lake.shoreline) {
|
||||
// reset heights
|
||||
currentCellHeights[shoreCellId] = heights[shoreCellId];
|
||||
currentLakeHeights[lake.i] = lake.height;
|
||||
}
|
||||
|
||||
drainableLakes[lake.i] = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
currentLakeHeights[lake.i] = minShoreHeight + LAKE_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
}
|
||||
|
||||
for (const cellId of landCells) {
|
||||
const minHeight = getMinHeight(cells.c[cellId]);
|
||||
if (minHeight >= MAX_HEIGHT || currentCellHeights[cellId] > minHeight) continue;
|
||||
|
||||
currentCellHeights[cellId] = minHeight + LAND_ELEVATION_INCREMENT;
|
||||
depressionsLeft++;
|
||||
}
|
||||
|
||||
depressions.push(depressionsLeft);
|
||||
|
||||
// check depression resolving progress
|
||||
if (depressions.length > 5) {
|
||||
const depressionsInitial = depressions.at(0) || 0;
|
||||
const depressiosRecently = depressions.at(-6) || 0;
|
||||
|
||||
const isProgressingOverall = depressionsInitial < depressionsLeft;
|
||||
if (!isProgressingOverall) return [heights, Object.fromEntries(lakes.map(({i, height}) => [i, height]))];
|
||||
|
||||
const isProgressingRecently = depressiosRecently < depressionsLeft;
|
||||
if (!isProgressingRecently) return [currentCellHeights, currentLakeHeights];
|
||||
}
|
||||
}
|
||||
|
||||
// define lakes that potentially can be open (drained into another water body)
|
||||
function checkLakesDrainability() {
|
||||
const canBeDrained: Dict<boolean> = {}; // all false by default
|
||||
const drainAllLakes = ELEVATION_LIMIT === MAX_HEIGHT - MIN_LAND_HEIGHT;
|
||||
|
||||
for (const lake of lakes) {
|
||||
if (drainAllLakes) {
|
||||
canBeDrained[lake.i] = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
canBeDrained[lake.i] = false;
|
||||
const minShoreHeight = getMinHeight(lake.shoreline);
|
||||
const minHeightShoreCell =
|
||||
lake.shoreline.find(cellId => heights[cellId] === minShoreHeight) || lake.shoreline[0];
|
||||
|
||||
const queue = [minHeightShoreCell];
|
||||
const checked = [];
|
||||
checked[minHeightCell] = true;
|
||||
checked[minHeightShoreCell] = true;
|
||||
const breakableHeight = lake.height + ELEVATION_LIMIT;
|
||||
|
||||
// check if elevated lake can potentially pour to another water body
|
||||
while (deep && queue.length) {
|
||||
loopCellsAroundLake: while (queue.length) {
|
||||
const cellId = queue.pop()!;
|
||||
|
||||
for (const neibCellId of cells.c[cellId]) {
|
||||
if (checked[neibCellId]) continue;
|
||||
if (heights[neibCellId] >= threshold) continue;
|
||||
if (heights[neibCellId] >= breakableHeight) continue;
|
||||
|
||||
if (heights[neibCellId] < MIN_LAND_HEIGHT) {
|
||||
const waterFeatureMet = features[cells.f[neibCellId]];
|
||||
const isOceanMet = waterFeatureMet && waterFeatureMet.type === "ocean";
|
||||
const isLakeMet = waterFeatureMet && waterFeatureMet.type === "lake";
|
||||
|
||||
if ((waterFeatureMet && waterFeatureMet.type === "ocean") || feature.height > waterFeatureMet.height) {
|
||||
deep = false;
|
||||
break;
|
||||
if (isOceanMet || (isLakeMet && lake.height > waterFeatureMet.height)) {
|
||||
canBeDrained[lake.i] = true;
|
||||
break loopCellsAroundLake;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -314,58 +402,14 @@ window.Rivers = (function () {
|
|||
queue.push(neibCellId);
|
||||
}
|
||||
}
|
||||
|
||||
return {...feature, closed: deep};
|
||||
});
|
||||
};
|
||||
|
||||
const land = cells.i.filter(i => h[i] >= 20 && !cells.b[i]); // exclude near-border cells
|
||||
land.sort((a, b) => h[a] - h[b]); // lowest cells go first
|
||||
|
||||
const progress = [];
|
||||
let depressions = Infinity;
|
||||
let prevDepressions = null;
|
||||
for (let iteration = 0; depressions && iteration < maxIterations; iteration++) {
|
||||
if (progress.length > 5 && d3.sum(progress) > 0) {
|
||||
// bad progress, abort and set heights back
|
||||
h = alterHeights(pack.cells);
|
||||
depressions = progress[0];
|
||||
break;
|
||||
}
|
||||
|
||||
depressions = 0;
|
||||
|
||||
if (iteration < checkLakeMaxIteration) {
|
||||
for (const l of lakes) {
|
||||
if (l.closed) continue;
|
||||
const minHeight = d3.min(l.shoreline.map(s => h[s]));
|
||||
if (minHeight >= 100 || l.height > minHeight) continue;
|
||||
|
||||
if (iteration > elevateLakeMaxIteration) {
|
||||
l.shoreline.forEach(i => (h[i] = cells.h[i]));
|
||||
l.height = d3.min(l.shoreline.map(s => h[s])) - 1;
|
||||
l.closed = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
depressions++;
|
||||
l.height = minHeight + 0.2;
|
||||
}
|
||||
}
|
||||
|
||||
for (const i of land) {
|
||||
const minHeight = d3.min(cells.c[i].map(c => height(c)));
|
||||
if (minHeight >= 100 || h[i] > minHeight) continue;
|
||||
|
||||
depressions++;
|
||||
h[i] = minHeight + 0.1;
|
||||
}
|
||||
|
||||
prevDepressions !== null && progress.push(depressions - prevDepressions);
|
||||
prevDepressions = depressions;
|
||||
return canBeDrained;
|
||||
}
|
||||
|
||||
depressions && WARN && console.warn(`Unresolved depressions: ${depressions}. Edit heightmap to fix`);
|
||||
|
||||
return [currentCellHeights, currentLakeHeights];
|
||||
};
|
||||
|
||||
// add points at 1/3 and 2/3 of a line between adjacents river cells
|
||||
|
|
|
|||
|
|
@ -24,8 +24,13 @@ export function createPack(grid: IGrid): IPack {
|
|||
const markup = markupPackFeatures(grid, vertices, pick(cells, "v", "c", "b", "p", "h"));
|
||||
const {features, featureIds, distanceField, haven, harbor} = markup;
|
||||
|
||||
const riverCells = {...cells, f: featureIds, t: distanceField, haven};
|
||||
Rivers.generate(grid, {cells: riverCells, features}, true);
|
||||
Rivers.generate(
|
||||
grid.cells.prec,
|
||||
grid.cells.temp,
|
||||
pick({...cells, f: featureIds, t: distanceField, haven}, "i", "c", "b", "g", "t", "h", "f", "haven"),
|
||||
features,
|
||||
true
|
||||
);
|
||||
|
||||
// Lakes.defineGroup(newPack);
|
||||
// Biomes.define(newPack, grid);
|
||||
|
|
|
|||
4
src/types/pack/feature.d.ts
vendored
4
src/types/pack/feature.d.ts
vendored
|
|
@ -27,6 +27,10 @@ interface IPackFeatureLake extends IPackFeatureBase {
|
|||
name: string;
|
||||
shoreline: number[];
|
||||
height: number;
|
||||
flux?: number;
|
||||
temp?: number;
|
||||
evaporation?: number;
|
||||
outCell?: number;
|
||||
}
|
||||
|
||||
type TPackFeature = IPackFeatureOcean | IPackFeatureIsland | IPackFeatureLake;
|
||||
|
|
|
|||
|
|
@ -68,6 +68,10 @@ export function convertTemperature(temp: number) {
|
|||
// Elevation
|
||||
// ***
|
||||
|
||||
export function getRealHeight(height: number) {
|
||||
return (height - 18) ** getInputNumber("heightExponentInput");
|
||||
}
|
||||
|
||||
// get user-friendly (real-world) height value from coordinates
|
||||
export function getFriendlyHeight([x, y]: TPoint) {
|
||||
const packH = pack.cells.h[findCell(x, y)];
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue