Fantasy-Map-Generator/modules/voronoi.js
2021-02-14 19:59:37 +03:00

135 lines
No EOL
6.7 KiB
JavaScript

class Voronoi {
/**
* Creates a Voronoi diagram from the given Delaunator, a list of points, and the number of points. The Voronoi diagram is constructed using (I think) the {@link https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm |Bowyer-Watson Algorithm}
* The {@link https://github.com/mapbox/delaunator/ |Delaunator} library uses {@link https://en.wikipedia.org/wiki/Doubly_connected_edge_list |half-edges} to represent the relationship between points and triangles.
* @param {{triangles: Uint32Array, halfedges: Int32Array}} delaunay A {@link https://github.com/mapbox/delaunator/blob/master/index.js |Delaunator} instance.
* @param {[number, number][]} points A list of coordinates.
* @param {number} pointsN The number of points.
*/
constructor(delaunay, points, pointsN) {
this.delaunay = delaunay;
this.points = points;
this.pointsN = pointsN;
this.cells = { v: [], c: [], b: [] }; // voronoi cells: v = cell vertices, c = adjacent cells, b = near-border cell
this.vertices = { p: [], v: [], c: [] }; // cells vertices: p = vertex coordinates, v = neighboring vertices, c = adjacent cells
// Half-edges are the indices into the delaunator outputs:
// delaunay.triangles[e] gives the point ID where the half-edge starts
// delaunay.triangles[e] returns either the opposite half-edge in the adjacent triangle, or -1 if there's not an adjacent triangle.
for (let e = 0; e < this.delaunay.triangles.length; e++) {
const p = this.delaunay.triangles[this.nextHalfedge(e)];
if (p < this.pointsN && !this.cells.c[p]) {
const edges = this.edgesAroundPoint(e);
this.cells.v[p] = edges.map(e => this.triangleOfEdge(e)); // cell: adjacent vertex
this.cells.c[p] = edges.map(e => this.delaunay.triangles[e]).filter(c => c < this.pointsN); // cell: adjacent valid cells
this.cells.b[p] = edges.length > this.cells.c[p].length ? 1 : 0; // cell: is border
}
const t = this.triangleOfEdge(e);
if (!this.vertices.p[t]) {
this.vertices.p[t] = this.triangleCenter(t); // vertex: coordinates
this.vertices.v[t] = this.trianglesAdjacentToTriangle(t); // vertex: adjacent vertices
this.vertices.c[t] = this.pointsOfTriangle(t); // vertex: adjacent cells
}
}
}
/**
* Gets the IDs of the points comprising the given triangle. Taken from {@link https://mapbox.github.io/delaunator/#triangle-to-points| the Delaunator docs.}
* @param {number} t The index of the triangle
* @returns {[number, number, number]} The IDs of the points comprising the given triangle.
*/
pointsOfTriangle(t) {
return this.edgesOfTriangle(t).map(edge => this.delaunay.triangles[edge]);
}
/**
* Identifies what triangles are adjacent to the given triangle. Taken from {@link https://mapbox.github.io/delaunator/#triangle-to-triangles| the Delaunator docs.}
* @param {number} t The index of the triangle
* @returns {number[]} The indices of the triangles that share half-edges with this triangle.
*/
trianglesAdjacentToTriangle(t) {
let triangles = [];
for (let edge of this.edgesOfTriangle(t)) {
let opposite = this.delaunay.halfedges[edge];
triangles.push(this.triangleOfEdge(opposite));
}
return triangles;
}
/**
* Gets the indices of all the incoming and outgoing half-edges that touch the given point. Taken from {@link https://mapbox.github.io/delaunator/#point-to-edges| the Delaunator docs.}
* @param {number} start The index of an incoming half-edge that leads to the desired point
* @returns {number[]} The indices of all half-edges (incoming or outgoing) that touch the point.
*/
edgesAroundPoint(start) {
const result = [];
let incoming = start;
do {
result.push(incoming);
const outgoing = this.nextHalfedge(incoming);
incoming = this.delaunay.halfedges[outgoing];
} while (incoming !== -1 && incoming !== start && result.length < 20);
return result;
}
/**
* Returns the center of the triangle located at the given index.
* @param {number} t The index of the triangle
* @returns {[number, number]}
*/
triangleCenter(t) {
let vertices = this.pointsOfTriangle(t).map(p => this.points[p]);
return this.circumcenter(vertices[0], vertices[1], vertices[2]);
}
/**
* Retrieves all of the half-edges for a specific triangle `t`. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.}
* @param {number} t The index of the triangle
* @returns {[number, number, number]} The edges of the triangle.
*/
edgesOfTriangle(t) { return [3 * t, 3 * t + 1, 3 * t + 2]; }
/**
* Enables lookup of a triangle, given one of the half-edges of that triangle. Taken from {@link https://mapbox.github.io/delaunator/#edge-and-triangle| the Delaunator docs.}
* @param {number} e The index of the edge
* @returns {number} The index of the triangle
*/
triangleOfEdge(e) { return Math.floor(e / 3); }
/**
* Moves to the next half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.}
* @param {number} e The index of the current half edge
* @returns {number} The index of the next half edge
*/
nextHalfedge(e) { return (e % 3 === 2) ? e - 2 : e + 1; }
/**
* Moves to the previous half-edge of a triangle, given the current half-edge's index. Taken from {@link https://mapbox.github.io/delaunator/#edge-to-edges| the Delaunator docs.}
* @param {number} e The index of the current half edge
* @returns {number} The index of the previous half edge
*/
prevHalfedge(e) { return (e % 3 === 0) ? e + 2 : e - 1; }
/**
* Finds the circumcenter of the triangle identified by points a, b, and c. Taken from {@link https://en.wikipedia.org/wiki/Circumscribed_circle#Circumcenter_coordinates| Wikipedia}
* @param {[number, number]} a The coordinates of the first point of the triangle
* @param {[number, number]} b The coordinates of the second point of the triangle
* @param {[number, number]} c The coordinates of the third point of the triangle
* @return {[number, number]} The coordinates of the circumcenter of the triangle.
*/
circumcenter(a, b, c) {
const [ax, ay] = a;
const [bx, by] = b;
const [cx, cy] = c;
const ad = ax * ax + ay * ay;
const bd = bx * bx + by * by;
const cd = cx * cx + cy * cy;
const D = 2 * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
return [
Math.floor(1 / D * (ad * (by - cy) + bd * (cy - ay) + cd * (ay - by))),
Math.floor(1 / D * (ad * (cx - bx) + bd * (ax - cx) + cd * (bx - ax)))
];
}
}